C2 feedstock-based biomanufacturing of value-added chemicals.
Curr Opin Biotechnol 2021;
73:240-245. [PMID:
34536659 DOI:
10.1016/j.copbio.2021.08.017]
[Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/23/2021] [Indexed: 11/21/2022]
Abstract
Engineering microbes to produce value-added chemicals from C6/C5 sugars sometimes requires long biosynthetic pathways, which causes carbon loss due to involving multiple metabolic branch nodes, leading to a lower product yield. Using C2 feedstocks derived from gaseous, cellulosic, and plastic wastes could establish shorter biosynthetic pathways to produce some target chemicals, for example, acetyl-CoA-derived natural products. Utilizing these waste-derived feedstocks would also contribute to reducing the carbon footprint of the chemical industry. In this review, we highlighted the promising waste-processing technologies that could provide C2 feedstocks that are compatible with microbial fermentation. We also analyzed the recent metabolic engineering works in which the microorganisms/fermentation processes were modified/optimized to utilize acetate, ethanol, or ethylene glycol more efficiently.
Collapse