1
|
Hydrodeoxygenation–Isomerization of Methyl Palmitate over SAPO-11-Supported Ni-Phosphide Catalysts. Catalysts 2022. [DOI: 10.3390/catal12111486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ni-phosphide catalysts on SAPO-11 were studied in the hydrodeoxygenation–isomerization of methyl palmitate (C15H31COOCH3—MP). The catalysts were synthesized using temperature-programmed reduction (TPR) of a phosphate precursor ((NH4)2HPO4 and Ni(CH3CH2COO)2), TPR of a phosphite precursor (H3PO3 and Ni(OH)2), and using phosphidation of Ni/SAPO-11 by PPh3 in the liquid phase. The samples were characterized by ICP-AES chemical analysis, N2 physisorption, NH3-TPD, XRD, and TEM. First, the screening of the catalysts prepared by the TPR method was carried out in a semi-batch autoclave to determine the influence of the preparation method and conditions on one-pot HDO–isomerization (290–380 °C, 2–3 MPa). The precursor’s nature and the amount of phosphorus strongly influenced the activity of the catalysts and their surface area and acidity. Isomerization occurred only at a low P content (Ni/P = 2/1) and blocking of the SAPO-11 channels by unreduced phosphates at higher P contents did not allow us to obtain iso-alkanes. Experiments with liquid phosphidation samples in a continuous-flow reactor also showed the strong dependence of activity on phosphidation duration as well as on Ni content. The highest yield of isomerized products (66% iso-C15–16 hydrocarbons, at complete conversion of O-containing compounds, 340 °C, 2 MPa, and LHSV = 5.3 h−1) was obtained over 7% Ni2P/SAPO-11 prepared by the liquid phosphidation method.
Collapse
|
2
|
The Role of Nanodispersed Catalysts in Microwave Application during the Development of Unconventional Hydrocarbon Reserves: A Review of Potential Applications. Processes (Basel) 2021. [DOI: 10.3390/pr9030420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Electromagnetic impact on oil reservoir manifests itself in various physical and chemical phenomena and attracts a significant scientific and technological interest. Microwave (MW) radiation heating can be more efficient for the oil recovery than heat transfer by convection or by thermal conduction. MW influence can also lead to significant changes in the physicochemical and rheological properties of oil caused by chemical processes of transformation of the oil high-molecular components such as resins and asphaltenes. The efficiency of transition-metal catalysts applied for the in-situ conversion of hydrocarbons directly in the reservoir might be significantly increased by exposing the oil formation to MW radiation. Actually, transition metals nanoparticles and their oxides are considered as active absorbers of MW radiation and; therefore, they can be used to intensify MW impact on the reservoir. Catalyst particles dispersed in the formation provide enhanced MW sweep. Taken together, the functioning of the catalysts and the effect of microwave radiation provide deep conversion of resins and asphaltenes, a decrease in the viscosity of the produced oil and an increase in oil recovery factor, along with a decrease in water cut of the well production. The present review analyzes the latest works on the combined application of microwave exposure and dispersed catalysts. In addition, this review discusses the prospects and perspectives of practical application of electromagnetic heating to enhance heavy oil recovery in the presence of nanoparticles.
Collapse
|