1
|
Song Y, Maskey S, Lee YG, Lee DS, Nguyen DT, Bae HJ. Optimizing bioconversion processes of rice husk into value-added products: D-psicose, bioethanol, and lactic acid. BIORESOURCE TECHNOLOGY 2024; 395:130363. [PMID: 38253244 DOI: 10.1016/j.biortech.2024.130363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Rice husk, rich carbon content, is an agricultural waste produced globally at an amount of 120 million tons annually, and it has high potential as a biorefinery feedstock. Herein, we investigated the feasibility of producing various products as D-psicose, bioethanol and lactic acid from rice husk (RH) through a biorefinery process. Alkali-hydrogen peroxide-acetic acid pretreatment of RH effectively removed lignin and silica, resulting in enzymatic hydrolysis yield of approximately 86.3% under optimal hydrolysis conditions. By using xylose isomerase as well as D-psicose-3-epimerase with borate, glucose present in the RH hydrolysate was converted into D-psicose with a 40.6% conversion yield in the presence of borate. Furthermore, bioethanol (85.4%) and lactic acid (92.5%) were successfully produced from the RH hydrolysate. This study confirmed the high potential of RH as a biorefinery feedstock, and it is expected that various platform chemicals and value-added products can be produced using RH.
Collapse
Affiliation(s)
- Younho Song
- Bio-energy Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Shila Maskey
- Bio-energy Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yoon Gyo Lee
- Bio-energy Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dae-Seok Lee
- Bio-energy Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | | | - Hyeun-Jong Bae
- Bio-energy Research Center, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
2
|
Delidovich I. Toward Understanding Base-Catalyzed Isomerization of Saccharides. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Irina Delidovich
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, A-1060 Vienna, Austria
| |
Collapse
|
3
|
Selective glucose oxidation to organic acids over synthesized bimetallic oxides at low temperatures. REACTION KINETICS MECHANISMS AND CATALYSIS 2023. [DOI: 10.1007/s11144-022-02342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
4
|
Ma X, Huang W, Song Y, Han J, Wu J, Wang L, Wang Y. Novel Recyclable UCST-Type Immobilized Glucose Isomerase Biocatalyst with Excellent Performance for Isomerization of Glucose to Fructose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13959-13968. [PMID: 36264233 DOI: 10.1021/acs.jafc.2c05667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of a suitable immobilization strategy to improve the performance of immobilized glucose isomerase for the isomerization of glucose to fructose is crucial to promoting the industrial production of high-fructose syrup. In this work, a novel recyclable upper critical solution temperature (UCST)-type mVBA-b-P(AAm-co-AN)@glucose isomerase biocatalyst (PVAA@GI) was prepared, and the immobilized glucose isomerase could capture the glucose substrate through the affinity of 4-vinylbenzeneboronic acid (4-VBA) and the glucose substrate, which led to the enhanced substrate affinity and catalytic efficiency of the PVAA@GI. The biocatalyst exhibited excellent stability in pH, thermal, storage, and recycling compared to the free enzyme. The mVBA-b-P(AAm-co-AN)@glucose isomerase biocatalyst displayed reversibly soluble-insoluble characteristics with temperature change, which was in the soluble state during the enzyme reaction process but could be recovered in an insoluble form by lowering the temperature after the reaction. The highest fructose production rate reached 62.79%, which would have potential application in the industrial production of high-fructose syrup.
Collapse
Affiliation(s)
- Xinnan Ma
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, China
| | - Wenrui Huang
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang212013, China
| | - Yongqing Song
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, China
| | - Juan Han
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang212013, China
| | - Jiacong Wu
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, China
| | - Lei Wang
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, China
| | - Yun Wang
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, China
| |
Collapse
|
5
|
Study of base-catalyzed isomerization of d-glucose with a focus on reaction kinetics. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
AbstractWe explored the isomerization of d-glucose into d-fructose using the simplest possible base catalyst, aqueous NaOH, to maintain a constant pH value during the reaction. Under the applied mild conditions (T 50–90 °C, pH 9.5–11.5), yields of d-fructose of up to 31% were observed. Selectivity-conversion plots were not significantly influenced by variation of the temperature, pH value or substrate concentration. A reaction network for kinetic modelling includes d-glucose-d-fructose interconversion, co-production of d-mannose and d-allulose (also known as d-psicose) as well as decomposition paths after deprotonation of the hexoses. All four hexoses were employed as substrates in the isomerization. Thermodynamic ionization constants of the saccharides were measured by means of potentiometric titration. In the kinetic studies, pH-independent rate constants as well as activation energies were determined. The obtained kinetic and thermodynamic results as well as selectivity-conversion correlations present a useful benchmark for soluble and solid base catalysts.
Collapse
|
6
|
Biochemical Methane Potential of a Biorefinery’s Process-Wastewater and its Components at Different Concentrations and Temperatures. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A sustainable circular bioeconomy requires the side streams and byproducts of biorefineries to be assimilated into bioprocesses to produce value-added products. The present study endeavored to utilize such a byproduct generated during the synthesis of 5-hydroxymethylfurfural as a potential feedstock for biogas production. For this purpose, biochemical methane potential tests for the full process-wastewater, its components (5-hydroxymethylfurfural, furfural, levulinic acid, and glycolic acid), together with furfural’s metabolites (furfuryl alcohol and furoic acid), and phenols (syringaldehyde, vanillin, and phenol), were conducted at mesophilic and thermophilic temperatures to assess their biodegradability and gas production kinetics. 0.1, 0.2, 0.3, and 0.4 g COD of the test components were added separately into assays containing 35 mL of inoculum. At their lowest concentrations, the test components, other than the process-wastewater, exhibited a stimulatory effect on methane production at 37 °C, whereas their increased concentrations returned a lower mean specific methane yield at either temperature. For similar component loads, the mesophilic assays outperformed the thermophilic assays for the mean measured specific methane yields. Components that impaired the anaerobic process with their elevated concentrations were phenol, vanillin, and 5-hydroxymethylfurfural. Poor degradation of the process-wastewater was deduced to be linked to the considerable share of 5-hydroxymethylfurfural in the process-wastewater governing its overall characteristics. With excessive recalcitrant components, it is recommended to use such waste streams and byproducts as a substrate for biogas plants operating at moderate temperatures, but at low rates.
Collapse
|
7
|
Hydrothermal Conversion of Fructose to Lactic Acid and Derivatives: Synergies of Metal and Acid/Base Catalysts. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.12.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Toussaint V, Delidovich I. Revealing the contributions of homogeneous and heterogeneous catalysis to isomerization of d-glucose into d-fructose in the presence of basic salts with low solubility. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00551d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hydroxide anions are identified as catalytically active species for the isomerization of d-glucose to d-fructose over low soluble basic salts. The highest selectivity for d-fructose was obtained for catalysis by MgCO3.
Collapse
Affiliation(s)
- Valérie Toussaint
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
- Chair of Heterogeneous Catalysis and Chemical Technology, Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Irina Delidovich
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
- Chair of Heterogeneous Catalysis and Chemical Technology, Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| |
Collapse
|