1
|
Arenas-Lago D, Race M, Zhang Z, Núñez-Delgado A. Removal of emerging pollutants from the environment: From bioadsorbents to nanoparticle-based systems. ENVIRONMENTAL RESEARCH 2023; 216:114692. [PMID: 36374794 DOI: 10.1016/j.envres.2022.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In the Call for Papers corresponding to this Virtual Special Issue (VSI), the Editors indicated that, as is well known, emerging pollutants include a variety of substances that pose remarkable risks for the environment and public health. In fact, emerging pollutants are considered a matter of concern deserving increasing efforts to elucidate their occurrence, fate, repercussions, and alternatives to their removal from the various environmental compartments where they can be found after spreading as contaminants. Also, the Editors commented that, among the various alternatives that can be considered for achieving their successful removal, some of them are based on the use of sorbent materials, and, specifically, bioadsorbents, which are attractive due to the efficacy and low cost associated with some of them. Another alternative is related to the utilization of nanoparticle-based systems, which may be considered a promising field of research in this way. In both cases, obtaining new research results, as well as designing and programming new ways of going steps ahead in the investigation of both kinds of materials, would be key objectives. According to the previous considerations, the Editors of the VSI invited researchers having new data concerning these aspects to submit manuscripts with experimental results, discussion, reflections and prospective related to their work. With the Special Issue closed, the number of submissions received was 83, with 40 high-quality works being accepted for publication, increasing the overall knowledge on this topic by providing results that we are sure will be of value for the scientific community and the society.
Collapse
Affiliation(s)
- Daniel Arenas-Lago
- Soil Science and Agricultural Chemistry, Univ. of Vigo, Fac. Sciences, Campus Univ., 32004 Ourense, Spain
| | - Marco Race
- Department of Civil and Mechanical Engineering, Univ. of Cassino and Southern Lazio 03043 Cassino, Italy
| | - Zhien Zhang
- Department of Chemical and Biomedical Engineering, West Virginia Univ., Morgantown, WV, USA
| | - Avelino Núñez-Delgado
- Dept. Soil Sci. and Agric. Chem., Univ. of Santiago de Compostela, Engineering Polytech. School, Campus Univ. S/n, 27002 Lugo, Spain.
| |
Collapse
|
2
|
Chen Y, D'Errico G, Fabbricino M, Gallucci N, Pontoni L, Race M, Yao S. Role of organic nanoparticles on transport and fate of various dyes in aqueous solution. ENVIRONMENTAL RESEARCH 2022; 215:114179. [PMID: 36100103 DOI: 10.1016/j.envres.2022.114179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
This work studies the interaction of organic nanoparticles (ON) with various dyes in aqueous solution, to elucidate the role of ON on transport and fate of dyes in the environment, and on dyes removal from wastewater. Studied dyes are Acid Red 66 (AR66), Methylene Blue (MB), Reactive Black 5 (RB5), and Reactive Violet 5 (RV5). ON are extracted from organic matter of anthropogenic origin through resuspension of its colloidal fraction, and successive filtration and dialysis of the obtained suspension. Mechanisms of interaction are investigated initially through three-dimensional excitation emission matrix (3DEEM) analysis. Obtained data indicate that dynamic interactions occur strongly between dye molecules and ON aggregates. 3DEEM spectra of mixed samples containing ON together with one of the tested dyes, present a shape similar to the one of ON alone, but each of them is characterized by specific differences in terms of peaks quenching and shift. The analysis of these singularities suggests that dye molecules are bound to the functional groups of ON through H-bonds, according to the following steps: i) dyes reach the surface of ON aggregates; ii) the molecules pass through the hydrophilic surface of ON aggregates, and reach their hydrophobic core; iii) the dyes are sequestrated into the hydrophobic core of ON aggregates. Nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopies analysis confirm the formation of supramolecular aggregates with stable micellar hydrophobic structure, mainly consisting of aliphatic fractions of ON, which explain the disappearance of aromatic groups signals from dyes.
Collapse
Affiliation(s)
- Yao Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples Federico II, Complesso di Monte Sant'Angelo Angelo, Via Cinthia, I-80126, Naples, NA, Italy
| | - Massimiliano Fabbricino
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, Naples, 80125, Italy.
| | - Noemi Gallucci
- Department of Chemical Sciences, University of Naples Federico II, Complesso di Monte Sant'Angelo Angelo, Via Cinthia, I-80126, Naples, NA, Italy
| | - Ludovico Pontoni
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, Naples, 80125, Italy
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via di Biasio 43, 03043, Cassino, Italy
| | - Sicong Yao
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, Naples, 80125, Italy
| |
Collapse
|
3
|
Loffredo E. Recent Advances on Innovative Materials from Biowaste Recycling for the Removal of Environmental Estrogens from Water and Soil. MATERIALS 2022; 15:ma15051894. [PMID: 35269122 PMCID: PMC8911978 DOI: 10.3390/ma15051894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022]
Abstract
New technologies have been developed around the world to tackle current emergencies such as biowaste recycling, renewable energy production and reduction of environmental pollution. The thermochemical and biological conversions of waste biomass for bioenergy production release solid coproducts and byproducts, namely biochar (BC), hydrochar (HC) and digestate (DG), which can have important environmental and agricultural applications. Due to their physicochemical properties, these carbon-rich materials can behave as biosorbents of contaminants and be used for both wastewater treatment and soil remediation, representing a valid alternative to more expensive products and sophisticated strategies. The alkylphenols bisphenol A, octylphenol and nonylphenol possess estrogenic activity comparable to that of the human steroid hormones estrone, 17β-estradiol (and synthetic analog 17α-ethinyl estradiol) and estriol. Their ubiquitous presence in ecosystems poses a serious threat to wildlife and humans. Conventional wastewater treatment plants often fail to remove environmental estrogens (EEs). This review aims to focus attention on the urgent need to limit the presence of EEs in the environment through a modern and sustainable approach based on the use of recycled biowaste. Materials such as BC, HC and DG, the last being examined here for the first time as a biosorbent, appear appropriate for the removal of EEs both for their negligible cost and continuously improving performance and because their production contributes to solving other emergencies, such as virtuous management of organic waste, carbon sequestration, bioenergy production and implementation of the circular economy. Characterization of biosorbents, qualitative and quantitative aspects of the adsorption/desorption process and data modeling are examined.
Collapse
Affiliation(s)
- Elisabetta Loffredo
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
4
|
Faisal AAH, Ramadhan ZK, Al-Ansari N, Sharma G, Naushad M, Bathula C. Precipitation of (Mg/Fe-CTAB) - Layered double hydroxide nanoparticles onto sewage sludge for producing novel sorbent to remove Congo red and methylene blue dyes from aqueous environment. CHEMOSPHERE 2022; 291:132693. [PMID: 34715111 DOI: 10.1016/j.chemosphere.2021.132693] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/17/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Preparation of new sorbent from precipitation of nano-sized (Mg/Fe-CTAB)- layered double hydroxide (LDH) on the surfaces of sewage sludge byproduct to remove the anionic and cationic dyes was the focal point of this work. The presence of nanoparticles and enlarged of interlayers by CTAB intercalation have increased the sludge surface area from 5.34 to 10.32 m2/g. The CTAB mass 0.03 g/50 mL, sludge dosage 1 g/50 mL and (Mg/Fe) molar ratio 2 were the best preparation conditions required to obtain effective sorbent with efficiencies exceeded 93% for MB and CR dyes. These efficiencies were obtained under operational conditions for batch study of 0.5 g coated sludge per 50 mL colored dye solution, initial pH 3 (for CR) and 12 (for MB), and time 3 h for 10 mg/L dyes at 200 rpm. Models of Langmuir and pseudo second-order have a high capability in the representation of sorption records with maximum capacities of adsorption 163.6 and 132.6 mg/g for CR and MB dye, respectively. The X-ray diffraction analysis proved that the calcite occurred mainly at 2θ = 29.8° while quartz corresponded to the 21, 26.6, 36.4, 36.9, 50.1, 60.01 and 68.4°. Characterization tests showed that nano-sized particles of magnesium/iron were precipitated on the sludge due to the formation of hydrotalcite-like compounds with an increase in the percentages of Mg and Fe from 0.87 and 1.36 to 4.25 and 3.03%, respectively. The results showed that the electrostatic attraction, intra-particle diffusion and hydrogen bonding were predominant mechanisms for removal of CR and MB onto coated sludge.
Collapse
Affiliation(s)
- Ayad A H Faisal
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq.
| | - Zahraa Khalid Ramadhan
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Nadhir Al-Ansari
- Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 97187, Lulea, Sweden
| | - Gaurav Sharma
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India; School of Science & Technology, Glocal University, Saharanpur, India
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, South Korea
| |
Collapse
|
5
|
Yao S, Fabbricino M, Pontoni L, Race M, Parrino F, Savignano L, D'Errico G, Chen Y. Characterization of anthropogenic organic matter and its interaction with direct yellow 27 in wastewater: Experimental results and perspectives of resource recovery. CHEMOSPHERE 2022; 286:131528. [PMID: 34303051 DOI: 10.1016/j.chemosphere.2021.131528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
The concept of natural organic matter of anthropogenic origin is introduced and its characteristics and interaction with chemical pollutants are investigated by adopting several distinct analytic methodologies. Scanning electron microscopy indicates that the used sample of anthropogenic organic matter (AOM) has an amphiphilic nature, which allows its supramolecular organization in water. Fourier transform infrared spectroscopy, in turn, gives a clear indication about the presence of polysaccharide markers, lipidic and amidic fractions, and suggests the absence of free organic acid. AOM sample and AOM mixed with dye sample were examined by the three-dimensional excitation-emission matrix fluorescence spectra and the nuclear magnetic resonance mono-dimensional spectra. The results highlighted the interactions occurring between the AOM and the reactive dye, selected as a representative chemical pollutant. Electron Spin Resonance confirms that the used AOM is able to completely include the dye in its structure. Overall, the obtained results indicate that the fate, transport, and toxicity of pollutants in the environment can be drastically influenced by the presence of AOM.
Collapse
Affiliation(s)
- Sicong Yao
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, Naples, 80125, Italy
| | - Massimiliano Fabbricino
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, Naples, 80125, Italy
| | - Ludovico Pontoni
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, Naples, 80125, Italy
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via di Biasio 43, 03043, Cassino, Italy
| | - Francesco Parrino
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Luigi Savignano
- Department of Chemical Sciences, University of Naples Federico II, Complesso di Monte S. 13 Angelo, Via Cinthia, 80126, Naples, NA, Italy
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples Federico II, Complesso di Monte S. 13 Angelo, Via Cinthia, 80126, Naples, NA, Italy
| | - Yao Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
6
|
Use of the Solid By-Product of Anaerobic Digestion of Biomass to Remove Anthropogenic Organic Pollutants with Endocrine Disruptive Activity. Processes (Basel) 2021. [DOI: 10.3390/pr9112018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Anaerobic digestion of biomass has increasing implementation for bioenergy production. The solid by-product of this technology, i.e., the digestate, has relevant potential in agricultural and environmental applications. This study explored the capacity of a digestate from mixed feedstock to remove from water four endocrine-disrupting chemicals, namely the pesticides metribuzin (MET) and boscalid (BOS) and the xenoestrogens bisphenol A (BPA) and 4-tert-octylphenol (OP). The surface micromorphology and functional groups of the digestate were investigated using scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy, respectively. Results of sorption kinetics showed that all compounds reached the steady state in a few hours according to a pseudo-first-order model in the cases of MET and OP, a pseudo-second-order model for BOS and both models in the case of BPA. Data of adsorption isotherms were fitted to the Henry, Freundlich, Langmuir and Temkin equations. The adsorption of MET preferentially followed the non-linear Freundlich model, whereas the adsorption of the other compounds was properly described by both the linear and Freundlich models. The organic carbon partition coefficients, KOC, were 170, 1066, 256 and 2180 L kg−1 for MET, BOS, BPA and OP, respectively. The desorption of BOS, BPA and OP was slow and incomplete, indicating a phenomenon of hysteresis. In conclusion, the digestate showed a remarkable efficiency in the removal of the compounds, especially those with high hydrophobicity, thus behaving as a promising biosorbent for environmental remediation.
Collapse
|