1
|
Zhang W, Jing H, Niu Q, Wu Z, Sun Y, Duan Y, Wang X. Sprayable, thermosensitive hydrogels for promoting wound healing based on hollow, porous and pH-sensitive ZnO microspheres. J Mater Chem B 2024; 12:7519-7531. [PMID: 38919121 DOI: 10.1039/d4tb00961d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
A solvothermal method and the subsequent heat treatment process were developed to fabricate hollow ZnO particles with hierarchical pores on a large scale. The as-obtained hollow, porous ZnO microspheres with tunable sizes, high specific surface areas, pH sensitivity, antibacterial properties, and high adsorption capacities showed significant advantages for drug delivery. Sprayable hydrogels containing hollow, porous ZnO microspheres and curcumin nanoparticles (CNPs) were prepared to accelerate wound healing. The water-dispersed CNPs promoted both the migration of fibroblasts and angiogenesis and an aqueous solution of Pluronic F127 (a temperature-sensitive phase-change hydrogel material) was shown to be an effective choice for medical dressings. The experimental data suggest that hollow, porous ZnO microspheres can be loaded with additional CNPs to achieve continuous long-term therapeutic effects.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China.
- College of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China.
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, P. R. China
| | - Hongshu Jing
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China.
| | - Qiang Niu
- College of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China.
| | - Zhihua Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China.
| | - Ying Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China.
| | - Yourong Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China.
| | - Xianwen Wang
- College of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China.
| |
Collapse
|
2
|
Pujahari SR, Purusottam RN, Mali PS, Sarkar S, Khaneja N, Vajpai N, Kumar A. Exploring the Higher Order Structure and Conformational Transitions in Insulin Microcrystalline Biopharmaceuticals by Proton-Detected Solid-State Nuclear Magnetic Resonance at Natural Abundance. Anal Chem 2024; 96:4756-4763. [PMID: 38326990 DOI: 10.1021/acs.analchem.3c04040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The integrity of a higher order structure (HOS) is an essential requirement to ensure the efficacy, stability, and safety of protein therapeutics. Solution-state nuclear magnetic resonance (NMR) occupies a unique niche as one of the most promising methods to access atomic-level structural information on soluble biopharmaceutical formulations. Another major class of drugs is poorly soluble, such as microcrystalline suspensions, which poses significant challenges for the characterization of the active ingredient in its native state. Here, we have demonstrated a solid-state NMR method for HOS characterization of biopharmaceutical suspensions employing a selective excitation scheme under fast magic angle spinning (MAS). The applicability of the method is shown on commercial insulin suspensions at natural isotopic abundance. Selective excitation aided with proton detection and non-uniform sampling (NUS) provides improved sensitivity and resolution. The enhanced resolution enabled us to demonstrate the first experimental evidence of a phenol-escaping pathway in insulin, leading to conformational transitions to different hexameric states. This approach has the potential to serve as a valuable means for meticulously examining microcrystalline biopharmaceutical suspensions, which was previously not attainable in their native formulation states and can be seamlessly extended to other classes of biopharmaceuticals such as mAbs and other microcrystalline proteins.
Collapse
Affiliation(s)
- Soumya Ranjan Pujahari
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai Mumbai 400076, India
| | - Rudra N Purusottam
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai Mumbai 400076, India
| | - Pramod S Mali
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai Mumbai 400076, India
| | - Sambeda Sarkar
- System and Control Engineering, Indian Institute of Technology, Bombay, Powai Mumbai 400076, India
| | - Navin Khaneja
- System and Control Engineering, Indian Institute of Technology, Bombay, Powai Mumbai 400076, India
| | - Navratna Vajpai
- Biocon Biologics Limited, Biocon SEZ, Plot No. 2 & 3, Phase IV-B.I.A, Bommasandra-Jigani Link Road, Bangalore 560099, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai Mumbai 400076, India
| |
Collapse
|
3
|
Shriky B, Vigato AA, Sepulveda AF, Machado IP, de Araujo DR. Poloxamer-based nanogels as delivery systems: how structural requirements can drive their biological performance? Biophys Rev 2023; 15:475-496. [PMID: 37681104 PMCID: PMC10480380 DOI: 10.1007/s12551-023-01093-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 09/09/2023] Open
Abstract
Poloxamers or Pluronics®-based nanogels are one of the most used matrices for developing delivery systems. Due to their thermoresponsive and flexible mechanical properties, they allowed the incorporation of several molecules including drugs, biomacromolecules, lipid-derivatives, polymers, and metallic, polymeric, or lipid nanocarriers. The thermogelling mechanism is driven by micelles formation and their self-assembly as phase organizations (lamellar, hexagonal, cubic) in response to microenvironmental conditions such as temperature, osmolarity, and additives incorporated. Then, different biophysical techniques have been used for investigating those structural transitions from the mechanisms to the preferential component's orientation and organization. Since the design of PL-based pharmaceutical formulations is driven by the choice of the polymer type, considering its physico-chemical properties, it is also relevant to highlight that factors inherent to the polymeric matrix can be strongly influenced by the presence of additives and how they are able to determine the nanogels biopharmaceuticals properties such as bioadhesion, drug loading, surface interaction behavior, dissolution, and release rate control. In this review, we discuss the general applicability of three of the main biophysical techniques used to characterize those systems, scattering techniques (small-angle X-ray and neutron scattering), rheology and Fourier transform infrared absorption spectroscopy (FTIR), connecting their supramolecular structure and insights for formulating effective therapeutic delivery systems. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-023-01093-2.
Collapse
Affiliation(s)
- Bana Shriky
- Department of Mechanical and Energy Systems Engineering, Faculty of Engineering and Informatics, University of Bradford, Bradford, UK
| | - Aryane Alves Vigato
- Natural and Human Sciences Centre, Federal University of ABC, Av. dos Estados 5001, Bloco A, Torre 3, Lab 503-3, Bairro Bangu, Santo André, São Paulo, CEP 090210-580 Brazil
| | - Anderson Ferreira Sepulveda
- Natural and Human Sciences Centre, Federal University of ABC, Av. dos Estados 5001, Bloco A, Torre 3, Lab 503-3, Bairro Bangu, Santo André, São Paulo, CEP 090210-580 Brazil
| | | | - Daniele Ribeiro de Araujo
- Natural and Human Sciences Centre, Federal University of ABC, Av. dos Estados 5001, Bloco A, Torre 3, Lab 503-3, Bairro Bangu, Santo André, São Paulo, CEP 090210-580 Brazil
| |
Collapse
|
4
|
Hameedat F, Pinto S, Marques J, Dias S, Sarmento B. Functionalized zein nanoparticles targeting neonatal Fc receptor to enhance lung absorption of peptides. Drug Deliv Transl Res 2023; 13:1699-1715. [PMID: 36587110 PMCID: PMC10126044 DOI: 10.1007/s13346-022-01286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2022] [Indexed: 01/02/2023]
Abstract
Peptides have a distinguished therapeutic potential for several chronic conditions, and more than 80 peptides exist in the global market. However, most of these marketed peptide drugs are currently delivered intravenously or subcutaneously due to their fast degradation and limited absorption through non-invasive routes. The pulmonary route is favored as a non-invasive route. Neonatal Fc receptor (FcRn) is expressed in adult human lungs and has a role in enhancing the pulmonary absorption of monoclonal antibodies. In this work, we developed and characterized candidate protein delivery systems for the pulmonary administration of peptides. The prepared bare and loaded zein nanoparticles (ZNPs), targeted, physically, and covalently PEGylated ZNPs showed hydrodynamic diameters between 137 and 155 nm and a narrow distribution index. Insulin, which was used as a protein model, showed an association efficiency of 72%, while the FcRn-targeted peptide conjugation efficiency was approximately 68%. The physically adsorbed poloxamer 407 on insulin-loaded ZNPs showed slower and controlled insulin release. The in vitro cell culture model consists of the NCI-H441 epithelial cell line, which confirmed its expression of the targeted receptor, FcRn. The safety of ZNPs was verified after incubation with both cell lines of the in vitro pulmonary model, namely NCI-H441 and HPMEC-ST1.6R, for 24 h. It was observed that targeted ZNPs enhanced insulin permeability by showing a higher apparent permeation coefficient than non-targeted ZNPs. Overall, both targeted PEGylated ZNPs showed to be suitable peptide carriers and adequately fit the demands of delivery systems designed for pulmonary administration.
Collapse
Affiliation(s)
- Fatima Hameedat
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- NANOMED EMJMD, Pharmacy School, Faculty of Health, University of Angers, Angers, France
- INEB - Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Soraia Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Joana Marques
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- FFUP - Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Sofia Dias
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- INEB - Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- IUCS - CESPU, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal.
| |
Collapse
|
5
|
Pujahari SR, Mali PS, Purusottam RN, Kumar A. Combined Liquid-State and Solid-State Nuclear Magnetic Resonance at Natural Abundance for Comparative Higher Order Structure Assessment in the Formulated-State of Biphasic Biopharmaceutics. Anal Chem 2023. [PMID: 37154614 DOI: 10.1021/acs.analchem.2c05485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A higher-order structure (HOS) is critical to a biopharmaceutical drug as the three-dimensional structure governs its function. Even the partial perturbation in the HOS of the drug can alter the biological efficiency and efficacy. Due to current limitations in analytical technologies, it is imperative to develop a protocol to characterize the HOS of biopharmaceuticals in the native formulated state. This becomes even more challenging for the suspension formulations where solution and solid phases co-exist. Here, we have used a combinatorial approach using liquid (1D 1H) and solid-state (13C CP MAS) NMR methodology to demonstrate the HOS in the biphasic microcrystalline suspension drug in its formulated state. The data were further assessed by principal component analysis and Mahalanobis distance (DM) calculation for quantitative assessment. This approach is sufficient to provide information regarding the protein HOS and the local dynamics of the molecule when combined with orthogonal techniques such as X-ray scattering. Our method can be an elegant tool to investigate batch-to-batch variation in the process of manufacture and storage as well as a biosimilarity comparison study for biphasic/microcrystalline suspension.
Collapse
Affiliation(s)
| | - Pramod S Mali
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Rudra N Purusottam
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
6
|
Safdar R, Thanabalan M. Preparation of Chitosan-Tripolyphosphate Formulated Insulin Microparticles, Their Characterization, ANN Prediction, and Release Kinetics. J Pharm Innov 2023. [DOI: 10.1007/s12247-023-09707-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
7
|
Lee SY, Jeon SI, Sim SB, Byun Y, Ahn CH. A supramolecular host-guest interaction-mediated injectable hydrogel system with enhanced stability and sustained protein release. Acta Biomater 2021; 131:286-301. [PMID: 34246803 DOI: 10.1016/j.actbio.2021.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/11/2021] [Accepted: 07/01/2021] [Indexed: 11/15/2022]
Abstract
Injectable hydrogels have been studied as drug delivery systems because of their minimal invasiveness and sustained drug release properties. Pluronic F127, consisting of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers, exhibits thermo-responsive properties and hence is injectable due to its rapid sol-gel transition. Unmodified Pluronic F127-based hydrogels, however, have limited long-term stability and controllable release of drugs entrapped within them. In this study, host-guest interactions between adamantane-conjugated Pluronic F127 (F127-Ad) and polymerized β-cyclodextrin (CDP) were employed to develop a hydrogel-based protein delivery system. Single or multiple adamantane units were successfully introduced at the termini of Pluronic F127 with a 100% conversion yield, and the synthesized F127-Ad polymer produced a physically crosslinked micelle-packing structure when mixed with CDP. As the number of adamantanes at the terminal ends of Pluronic F127 increased, the critical gelation concentration of F127-Ad/CDP hydrogel decreased from 15 to 6% (w/v). The F127/CDP hydrogel was able to maintain its structure even with lower polymer content, and its injectability improved with a reduction of the hydrogel viscosity. The long-term stability of F127/CDP hydrogels was evaluated in vitro and in vivo, and it was demonstrated that the subcutaneously injected hydrogel did not disintegrate for up to 30 d. Throughout the drug release test using gelatin and insulin as model drugs, it was demonstrated that their release rates could be regulated via complexation between the protein drugs and the β-cyclodextrin molecules inside the hydrogel. In conclusion, the F127-Ad/CDP hydrogel is expected to be a versatile protein delivery system with controllable durability and drug release characteristics. STATEMENT OF SIGNIFICANCE: Pluronic F127 is one of the widely studied polymeric materials for thermo-sensitive injectable hydrogels due to its high biocompatibility and rapid sol-gel transition. Since the Pluronic F127-based hydrogel has some limitations in its long-term stability and mechanical property, it is inevitable to modify its structure for the application to drug delivery. In this study, mono- or multi- adamantane-conjugated Pluronic F127s were synthesized and mixed with β-cyclodextrin polymers to form hydrogels with host-guest interaction-mediated micelle-packing structures. The host-guest interaction introduced into the hydrogel system endowed it a sustained protein drug release behavior as well as high durability in vitro and in vivo. By increasing the number of adamantane molecules at the end of the Pluronic F127, both the stability and injectability of the hydrogel could be also modulated.
Collapse
Affiliation(s)
- Seung Yong Lee
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seong Ik Jeon
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sung Bo Sim
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Youngro Byun
- Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Cheol-Hee Ahn
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|