1
|
Mune Mune MA, Hatanaka T, Kishimura H, Kumagai Y. Understanding Antidiabetic Potential of Oligosaccharides from Red Alga Dulse Devaleraea inkyuleei Xylan by Investigating α-Amylase and α-Glucosidase Inhibition. Molecules 2024; 29:1536. [PMID: 38611816 PMCID: PMC11013419 DOI: 10.3390/molecules29071536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
In this study, the α-glucosidase (maltase-glucoamylase: MGAM) and α-amylase inhibitory properties elicited by xylooligosaccharides (XOSs) prepared from dulse xylan were analysed as a potential mechanism to control postprandial hyperglycaemia for type-2 diabetes prevention and treatment. Xylan was purified from red alga dulse powder and used for enzymatic hydrolysis using Sucrase X to produce XOSs. Fractionation of XOSs produced xylobiose (X2), β-(1→3)-xylosyl xylobiose (DX3), xylotriose (X3), β-(1→3)-xylosyl-xylotriose (DX4), and a dulse XOS mixture with n ≥ 4 xylose units (DXM). The different fractions exhibited moderate MGAM (IC50 = 11.41-23.44 mg/mL) and α-amylase (IC50 = 18.07-53.04 mg/mL) inhibitory activity, which was lower than that of acarbose. Kinetics studies revealed that XOSs bound to the active site of carbohydrate digestive enzymes, limiting access to the substrate by competitive inhibition. A molecular docking analysis of XOSs with MGAM and α-amylase clearly showed moderate strength of interactions, both hydrogen bonds and non-bonded contacts, at the active site of the enzymes. Overall, XOSs from dulse could prevent postprandial hyperglycaemia as functional food by a usual and continuous consumption.
Collapse
Affiliation(s)
| | - Tadashi Hatanaka
- Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Research Institute for Biological Sciences (RIBS), Okayama, 7549-1 Kibichuo-cho, Kaga-gun, Okayama 716-1241, Japan;
| | - Hideki Kishimura
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan;
| | - Yuya Kumagai
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan;
| |
Collapse
|
2
|
Djaoudene O, Bachir-Bey M, Schisano C, Djebari S, Tenore GC, Romano A. A Sustainable Extraction Approach of Phytochemicals from Date ( Phoenix dactylifera L.) Fruit Cultivars Using Ultrasound-Assisted Deep Eutectic Solvent: A Comprehensive Study on Bioactivity and Phenolic Variability. Antioxidants (Basel) 2024; 13:181. [PMID: 38397779 PMCID: PMC10886234 DOI: 10.3390/antiox13020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The present study aimed to evaluate the efficacy of natural deep eutectic solvents (NADESs) on the extraction of phytochemicals from eight Algerian date fruit cultivars (Phoenix dactylifera L.). In this study, lactic acid/sucrose-based NADESs were used as an alternative to conventional chemical solvents using the ultrasound-assisted extraction (UAE) method. The obtained extracts were assessed for the determination of bioactive compound contents, phenolic composition, antioxidant activity, and enzyme inhibitory potential. The results showed a considerable variation in phytochemical compositions and related activities between cultivars, where the greatest contents of total phenolics (1288.7 mg GAE/100 g), total flavonoids (53.8 mg QE/100 g), proanthocyanidins (179.5 mg CE/g), and total triterpenoids (12.88 mg OAE/100 g) were detected in the fruits of the Ourous cultivar. The same cultivar displayed the highest antioxidant capacity against DPPH• free radical (595 mg AAE/100 g), ABTS•+ cation radical (839 mg TE/100 g), and ferric reducing antioxidant potential (704 mg AAE/100 g). All extracts manifested moderate antioxidant activities tested by phosphomolybdenum, NO•, and linoleic acid lipid peroxidation assays. These extracts also exhibited interesting levels of in vitro enzyme inhibition; the Ourous cultivar gave the best inhibitory activity against α-amylase and acetylcholinesterase with 45 and 37%, respectively. HPLC-DAD-MS detected a total of five compounds, with phenolic acids and flavonoids being the main phenolics identified in the extract. The phenolic composition exhibited significant variability among cultivars. Notably, the highest amounts were revealed in the Tazizaout cultivar, with the predominance of gallic acid. The results confirmed that the combination of UAE and NADESs provides a novel and important alternative to chemical solvents for sustainable and environmentally friendly extraction and can represent a good alternative in food and pharmaceutical industry applications.
Collapse
Affiliation(s)
- Ouarda Djaoudene
- Centre de Recherche en Technologies Agroalimentaires, Route de Targa Ouzemmour, Campus Universitaire, Bejaia 06000, Algeria
| | - Mostapha Bachir-Bey
- Laboratory of Applied Biochemistry, Department of Food Sciences, Faculty of Natural and Life Sciences, University of Bejaia, Bejaia 06000, Algeria;
| | - Connie Schisano
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (C.S.); (G.C.T.)
| | - Sabrina Djebari
- Laboratory of Biomathematic, Biophysic, Biochemistry and Scientometry, Faculty of Natural and Life Sciences, University of Bejaia, Bejaia 06000, Algeria;
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (C.S.); (G.C.T.)
| | - Anabela Romano
- MED—Mediterranean Institute for Agriculture, Environment and Development, CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| |
Collapse
|
3
|
Qi S, Jiang B, Huang C, Jin Y. Dual Regulation of Sulfonated Lignin to Prevent and Treat Type 2 Diabetes Mellitus. Biomacromolecules 2023; 24:841-848. [PMID: 36608216 DOI: 10.1021/acs.biomac.2c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
With the rapid increase of diabetes cases in the world, there is an increasing demand for slowing down and managing diabetes and its effects. It is considered that a viable prophylactic treatment for type 2 diabetes mellitus (T2DM) is to reduce carbohydrate digestibility by controlling the activities of α-amylase and α-glucosidase to control postprandial hyperglycemia and promote the growth of intestinal beneficial bacteria. In this work, the effects of sulfonated lignin with different sulfonation degrees (0.8 mmol/g, SL1; 2.9 mmol/g, SL2) on the inhibition of α-amylase and α-glucosidase and the proliferation of intestinal beneficial bacteria in vitro were investigated. The results showed that both SL1 and SL2 can inhibit the activity of α-amylase and α-glucosidase. The inhibition capacity (IC50, 32.35 μg/mL) of SL2 with a low concentration (0-0.5 mg/mL) to α-amylase was close to that of acarbose to α-amylase (IC50, 27.33 μg/mL). Compared with the control groups, the bacterial cell concentrations of Bifidobacteria adolescentis and Lactobacillus acidophilus cultured with SL1 and SL2 increased in varying degrees (8-36%), and the produced short-chain fatty acids were about 1.2 times higher. This work demonstrates the prospect of sulfonated lignin as a prebiotic for the prevention and treatment of T2DM, which provides new insights for opening up a brand new field of lignin.
Collapse
Affiliation(s)
- Shuang Qi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Huang Y, Condict L, Richardson SJ, Brennan CS, Kasapis S. Exploring the inhibitory mechanism of p-coumaric acid on α-amylase via multi-spectroscopic analysis, enzymatic inhibition assay and molecular docking. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
5
|
An in vivo approach to the reported effects of phenolic acids and flavonoids on the pancreatic α-amylase activity. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
Hu X, Chen Y, Dai J, Yao L, Wang L. Rhodomyrtus tomentosa Fruits in Two Ripening Stages: Chemical Compositions, Antioxidant Capacity and Digestive Enzymes Inhibitory Activity. Antioxidants (Basel) 2022; 11:1390. [PMID: 35883880 PMCID: PMC9311718 DOI: 10.3390/antiox11071390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Rhodomyrtus tomentosa fruit (RTF) has been known as a food source with multiple health-care components. In this work, nutrition characteristics, free and bound phenolic profiles, antioxidant properties in vitro and digestive enzymes inhibitory activities of un-fully mature RTF (UM-RTF) and fully mature RTF (FM-RTF) were evaluated for the first time. Results verified that high levels of energy, ascorbic acid, organic acids and total phenolics were observed in FM-RTF. Moreover, FM-RTF had significant higher total phenolic content (TPC), but significantly lower total flavonoid content (TFC) than UM-RTF. In addition, twenty phenolic compounds in RTF were identified by high performance liquid chromatography-electrospray ionization-quadrupole time-of-flight tandem mass spectrometry (HPLC-ESI-qTOF-MS/MS) method. Quantitative analysis results indicated that gallic acid, ellagic acid and astragalin were the predominant free phenolics, while gallic acid and syringetin-3-O-glucoside were dominant in bound phenolic fractions. In contrast, higher contents of phenolics were observed in FM-RTF. The results also confirmed that FM-RTF exhibited higher antioxidant activities and digestive enzymes inhibitory activities than UM-RTF. Strong inhibitory ability on α-glucosidase was found in RTF, while bound phenolics showed a stronger α-amylase inhibitory effect than free phenolics. Moreover, the interaction between the main phenolic compounds and α-glucosidase/α-amylase was preliminary explored by molecular docking analysis. The results provided valuable data about the chemical compositions and biological potential of R. tomentosa fruits in both maturation stages studied.
Collapse
Affiliation(s)
- Xiaoping Hu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.H.); (Y.C.); (J.D.); (L.Y.)
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou 570228, China
| | - Yuting Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.H.); (Y.C.); (J.D.); (L.Y.)
| | - Jincheng Dai
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.H.); (Y.C.); (J.D.); (L.Y.)
| | - Linling Yao
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.H.); (Y.C.); (J.D.); (L.Y.)
| | - Lu Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.H.); (Y.C.); (J.D.); (L.Y.)
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou 570228, China
| |
Collapse
|
7
|
Modulating the digestibility of cassava starch by esterification with phenolic acids. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Malik N, Dhiman P. New Approaches and advancement in drug development from phenolic p-coumaric acid. Curr Top Med Chem 2022; 22:1515-1529. [PMID: 35473545 DOI: 10.2174/0929866529666220426121324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/21/2022] [Accepted: 03/12/2022] [Indexed: 11/22/2022]
Abstract
P-coumaric acid occurs as a common dietary polyphenol distributed in fruits, vegetables, and cereals in associated and free form. The toxicity profile of the drug is very low and it exhibits many pharmacological actions (antihypertensive, anti-inflammatory, anticancer, antimicrobial activity, antidiabetic, anticancer, and antioxidant effect). P-coumaric acid also acts as a free radical scavenger and inhibits various enzymes which generate free radicals. It is also used as the raw material for the preparation of preservatives, vanillin, sports foods, skin defense agents, and as a cross-linker for the formation of edible films and food gels. The current study is based upon biological effectiveness, molecular docking, SAR, sources of p-coumaric acid, and related derivatives.
Collapse
Affiliation(s)
- Neelam Malik
- Faculty, Department of Pharmaceutical Sciences, Panipat Institute of Engineering & Technology (PIET), Samalkha, Haryana 132102, India
| | - Priyanka Dhiman
- Faculty, Department of Pharmaceutical Sciences, Chandigarh Group of Colleges (CGC), Landran, Sahibzada Ajit Singh Nagar, India
| |
Collapse
|
9
|
Pollini L, Blasi F, Ianni F, Grispoldi L, Moretti S, Di Veroli A, Cossignani L, Cenci-Goga BT. Ultrasound-Assisted Extraction and Characterization of Polyphenols from Apple Pomace, Functional Ingredients for Beef Burger Fortification. Molecules 2022; 27:1933. [PMID: 35335297 PMCID: PMC8956034 DOI: 10.3390/molecules27061933] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022] Open
Abstract
Currently, there is an increasing interest to valorise agri-food waste containing bioactive compounds with potential health benefits. In this paper, the recovery of functional molecules from apple pomace, the most abundant by-product of the apple processing industry, was carried out by ultrasound-assisted extraction (UAE) on fresh and freeze-dried samples. UAE extract, obtained by double extraction of freeze-dried apple pomace, was subjected to chromatographic and spectrophotometric characterization. It showed good levels of total phenol content, high antioxidant activity, and interesting antioxidant compounds (quercetin derivatives, chlorogenic acid, phloridzin). Subsequently, freeze-dried apple pomace, containing 40.19% of dietary fibre, was used as a fortifying agent for beef burgers (4% and 8%). The results concerning colour and sensory analysis of the fortified products were graded even better than the control (0%). The improved fibre and phenol content, together with the neutral flavour, represent the most interesting characteristics of fortified burgers. The results confirm that UAE was a successful technique for extracting phenol compounds and that the addition of apple pomace represents a valid approach to increase the health properties and palatability of beef burgers, including for consumers who do not like meat.
Collapse
Affiliation(s)
- Luna Pollini
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (L.P.); (F.B.); (F.I.)
| | - Francesca Blasi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (L.P.); (F.B.); (F.I.)
| | - Federica Ianni
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (L.P.); (F.B.); (F.I.)
| | - Luca Grispoldi
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy;
| | - Simone Moretti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (S.M.); (A.D.V.)
| | - Alessandra Di Veroli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (S.M.); (A.D.V.)
| | - Lina Cossignani
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (L.P.); (F.B.); (F.I.)
- Center for Perinatal and Reproductive Medicine, Santa Maria della Misericordia University Hospital, University of Perugia, 06132 Perugia, Italy
| | | |
Collapse
|
10
|
Aleixandre A, Gil JV, Sineiro J, Rosell CM. Understanding phenolic acids inhibition of α-amylase and α-glucosidase and influence of reaction conditions. Food Chem 2022; 372:131231. [PMID: 34624776 DOI: 10.1016/j.foodchem.2021.131231] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023]
Abstract
Phenolic acids are involved in modulating the activity of starch digestive enzymes but remains unclear if their interaction with enzymes or starch is governing the inhibition. The potential inhibition of nine phenolic acids against α-amylase and α-glucosidase was studied applying different methodologies to understand interactions between phenolic acids and either enzymes or substrates. Vanillic and syringic acids were prone to interact with α-amylase requiring low half-maximum inhibitory concentration (IC50) to inhibit starch hydrolysis. Nevertheless, the initial interaction of phenolic acids with starch somewhat obstructed their interaction with starch, requiring 10 times higher IC50, with the exception of chlorogenic and gallic acid. The study demonstrates that 10% of the phenolic acids were retained during starch gelatinization. Those effects were not really evident with α-glucosidase, likely due to the small molecular size of maltose substrate. Phenolic acids with > 1 hydroxyl group like caffeic and protocatechuic acids showed the lowest IC50 against α-glucosidase.
Collapse
Affiliation(s)
- Andrea Aleixandre
- Institute of Agrochemistry and Food Technology (IATA-CSIC), C/Agustin Escardino, 7, 46980 Paterna, Spain
| | - José Vicente Gil
- Institute of Agrochemistry and Food Technology (IATA-CSIC), C/Agustin Escardino, 7, 46980 Paterna, Spain; Food Technology Area, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Jorge Sineiro
- Department of Chemical Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, Santiago de Compostela E-15782, Spain
| | - Cristina M Rosell
- Institute of Agrochemistry and Food Technology (IATA-CSIC), C/Agustin Escardino, 7, 46980 Paterna, Spain.
| |
Collapse
|
11
|
Nieto-Trujillo A, Cruz-Sosa F, Luria-Pérez R, Gutiérrez-Rebolledo GA, Román-Guerrero A, Burrola-Aguilar C, Zepeda-Gómez C, Estrada-Zúñiga ME. Arnica montana Cell Culture Establishment, and Assessment of Its Cytotoxic, Antibacterial, α-Amylase Inhibitor, and Antioxidant In Vitro Bioactivities. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112300. [PMID: 34834662 PMCID: PMC8624820 DOI: 10.3390/plants10112300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/12/2023]
Abstract
Arnica montana cell suspension culture could be a sustainable source of a vegetal material producer of secondary metabolites (SMs) possessing biological effects. Different plant growth regulator concentrations (0-5 mg/L) were tested in foliar explants to induce a callus that was used to establish a cell suspension culture. Growth kinetics was carried out for 30 days. A methanolic extract obtained from biomass harvested at 30 days of growth kinetics was fractionated, and three fractions were tested for bioactivities. We induced a callus with 1 mg/L of picloram and 0.5 mg/L of kinetin in foliar explants, which allowed for the establishment of a cell suspension culture, and the latter had the highest total SMs contents at day 30. Three fractions showed differences in total SMs contents, with the highest values per gram as follows: 270 mg gallic acid equivalent for total phenolic content, 200 mg quercetin equivalent for total flavonoid content, 83 mg verbascoside equivalent for total phenolic acid content, and 396 mg parthenolide equivalent for total sesquiterpene lactone content. The best bioactivities were 2-6 µg/mL for the 50% inhibition of 2,2-diphenyl-1-picrylhydrazyl radical, 30% cellular viability of lymphoma cells at 40 µg/mL, 17% inhibition against Escherichia coli and Staphylococcus aureus at 8 µg/disk, and α-amylase inhibition at 12% with 10 µg/mL. The total SMs contents were correlated with bioactivities.
Collapse
Affiliation(s)
- Aurelio Nieto-Trujillo
- Centro de Investigación en Recursos Bióticos, Facultad de Ciencias, Universidad Autónoma del Estado de México, Carretera Toluca-Ixtlahuaca Km 14.5, San Cayetano, Toluca 50295, Mexico;
| | - Francisco Cruz-Sosa
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Unidad Iztapalapa, Av. Ferrocarril San Rafael Atlixco No 186, Leyes de Reforma 1ra Sección, Ciudad de México 09340, Mexico; (F.C.-S.); (A.R.-G.)
| | - Rosendo Luria-Pérez
- Unidad de Investigación en Enfermedades Hemato-Oncológicas, Hospital Infantil de México Federico Gómez, Dr. Márquez No 162, Col. Doctores, Cuauhtémoc, Ciudad de México 06720, Mexico
| | - Gabriel Alfonso Gutiérrez-Rebolledo
- Laboratorio de Toxicología Productos Naturales, Academia de Toxicología, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas-Unidad Zacatenco, Instituto Politécnico Nacional, Av. Luis Enrique Erro S/N, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico;
| | - Angélica Román-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Unidad Iztapalapa, Av. Ferrocarril San Rafael Atlixco No 186, Leyes de Reforma 1ra Sección, Ciudad de México 09340, Mexico; (F.C.-S.); (A.R.-G.)
| | - Cristina Burrola-Aguilar
- Centro de Investigación en Recursos Bióticos, Facultad de Ciencias, Universidad Autónoma del Estado de México, Carretera Toluca-Ixtlahuaca Km 14.5, San Cayetano, Toluca 50295, Mexico;
| | - Carmen Zepeda-Gómez
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Campus El Cerrillo, Carretera Toluca-Ixtlahuaca Km 15.5, Piedras Blancas, Toluca 50200, Mexico;
| | - María Elena Estrada-Zúñiga
- Centro de Investigación en Recursos Bióticos, Facultad de Ciencias, Universidad Autónoma del Estado de México, Carretera Toluca-Ixtlahuaca Km 14.5, San Cayetano, Toluca 50295, Mexico;
| |
Collapse
|
12
|
Glycoside Hydrolases and Non-Enzymatic Glycation Inhibitory Potential of Viburnum opulus L. Fruit-In Vitro Studies. Antioxidants (Basel) 2021; 10:antiox10060989. [PMID: 34205673 PMCID: PMC8235151 DOI: 10.3390/antiox10060989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023] Open
Abstract
Phytochemicals of various origins are of great interest for their antidiabetic potential. In the present study, the inhibitory effects against carbohydrate digestive enzymes and non-enzymatic glycation, antioxidant capacity, and phenolic compounds composition of Viburnum opulus L. fruits have been studied. Crude extract (CE), purified extract (PE), and ethyl acetate (PEAF) and water (PEWF) fractions of PE were used in enzymatic assays to evaluate their inhibitory potential against α-amylase with potato and rice starch as substrate, α-glucosidase using maltose and sucrose as substrate, the antioxidant capacity (ABTS, ORAC and FRAP assays), antiglycation (BSA-fructose and BSA-glucose model) properties. Among four tested samples, PEAF not only had the highest content of total phenolics, but also possessed the strongest α-glucosidase inhibition, antiglycation and antioxidant activities. UPLC analysis revealed that this fraction contained mainly chlorogenic acid, proanthocyanidin oligomers and flavalignans. Contrary, the anti-amylase activity of V. opulus fruits probably occurs due to the presence of proanthocyanidin polymers and chlorogenic acids, especially dicaffeoylquinic acids present in PEWF. All V. opulus samples have an uncompetitive and mixed type inhibition against α-amylase and α-glucosidase, respectively. Considering strong anti-glucosidase, antioxidant and antiglycation activities, V. opulus fruits may find promising applications in nutraceuticals and functional foods with antidiabetic activity.
Collapse
|
13
|
Is the Household Microwave Recommended to Obtain Antioxidant-Rich Extracts from Lycium barbarum Leaves? Processes (Basel) 2021. [DOI: 10.3390/pr9040656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nowadays, much interest is devoted to the extraction of plant materials, considering also their waste and by-products, to obtain antioxidant-rich products. The effect of household microwave-assisted extraction (MAE) on the phenolic content and antioxidant activity of Lycium barbarum leaf extracts was investigated. An experimental design approach was adopted considering solid/liquid ratio (1, 3, and 5 g of leaves in 150 mL water), irradiation time (1, 3, and 5 min), and microwave power (300, 400, and 500 W) as independent variables. These three factors and their interactions were studied to evaluate the effect of MAE conditions on the responses of total phenolic content, antioxidant activity, and chlorogenic acid content. The results showed that the analytical parameters were positively influenced by the solid/liquid ratio and time. On the contrary, microwave power was inversely correlated with the investigated responses. This research revealed that microwave extraction conditions should be carefully monitored to obtain bioactive-rich aqueous extracts with high antioxidant activity. A comparison with household traditional methods showed an unexpected lower phenolic content and antioxidant activity for MAE extract in respect to the decoction and infusion. In fact, it was found that L. barbarum leaf infusion had the best functional properties, regarding the investigated characteristics. The outcome of this study has implications for raising awareness that household preparation conditions strongly affect the health properties of herbal extracts.
Collapse
|