1
|
Volatile Fatty Acid Production from Organic Waste with the Emphasis on Membrane-Based Recovery. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030159] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In recent years, interest in the biorefinery concept has emerged in the utilization of volatile fatty acids (VFAs) produced by acidogenic fermentation as precursors for various biotechnological processes. This has attracted substantial attention to VFA production from low-cost substrates such as organic waste and membrane based VFA recovery techniques to achieve cost-effective and environmentally friendly processes. However, there are few reviews which emphasize the acidogenic fermentation of organic waste into VFAs, and VFA recovery. Therefore, this article comprehensively summarizes VFA production, the factors affecting VFA production, and VFA recovery strategies using membrane-based techniques. Additionally, the outlook for future research on VFA production is discussed.
Collapse
|
2
|
Thermal Hydrolysis of Sewage Sludge: A Case Study of a WWTP in Burgos, Spain. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11030964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An evaluation of the energy and economic performance of thermal hydrolysis technologies is carried out on a theoretical basis. The wastewater treatment plant (WWTP) of Burgos (Spain) was the base scenario of this evaluation. Energy and mass balances were established considering the registered data of primary and secondary thickened sludge in the WWTP for 2011 to 2016. These balances were analysed considering five different scenarios, taking as Scenario 1, the plant operating with conventional mesophilic digestion. The scenarios considered commercially available technologies. The best results were obtained when hydrolysis was applied to digested sludge and sludge from the Solidstream® process. These two scenarios showed the best performance regarding volatile solid removal and lower demand for live steam, achieving a higher amount of biogas available for valorisation using combined heat and power (CHP) units. The main advantage of the hydrolysis process is the decrease in the volume of digesters and the amount of dewatered sludge needing final disposal. The Solidstream® process allowed a 35% increase in biogas available for engines and a 23% increase in electricity production.
Collapse
|