1
|
El-Sayed ESR, Baskaran A, Pomarańska O, Mykhailova D, Dunal A, Dudek A, Satam S, Strzała T, Łyczko J, Olejniczak T, Boratyński F. Bioprospecting Endophytic Fungi of Forest Plants for Bioactive Metabolites with Antibacterial, Antifungal, and Antioxidant Potentials. Molecules 2024; 29:4746. [PMID: 39407685 PMCID: PMC11477511 DOI: 10.3390/molecules29194746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
The growing emergence of multi-drug resistant microbial strains has kept the scientific world searching for novel bioactive compounds with specific chemical characteristics. Accordingly, researchers have started exploring the understudied metabolites from endophytes as a new source of bioactive compounds. In this context, the current study was designed to evaluate the bioactive properties of endophytic fungi from the Mokrzański forest in Wrocław, Poland that have not yet been fully researched. Forty-three endophytic fungi were isolated from twelve distinct plants. Following their cultivation, fungal extracts were separately prepared from biomass and cell-free filtrates, and their antibacterial, antifungal (against human and plant pathogens), and antioxidant properties were examined. Five promising fungi after screening were identified to possess all of these activities. These strains and their respective plant hosts were Trichoderma harzianum BUK-T (Fagus sylvatica), Aspergillus ochraceus ROB-L1 (Robinia pseudoacacia), Chaetomium cochliodes KLON-L1, Fusarium tricinctum KLON-L2 (Acer platanoides), and Penicillium chrysogenum SOS-B2 (Pinus sylvestris). Moreover, gamma irradiation at several doses (Gy) was separately applied to the fungal cultures to study their effects on the recorded activities. Finally, compounds after preparative thin-layer chromatography fractionation of the five fungal strains were identified by GC-MS. These findings suggest that the isolated endophytic fungi could serve as novel sources of bioactive metabolites with antibacterial, antifungal, and antioxidant properties, potentially paving the way for future research and the development of new bioactive compounds.
Collapse
Affiliation(s)
- El-Sayed R. El-Sayed
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (A.B.); (J.Ł.); (F.B.)
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 11787, Egypt
| | - Abirami Baskaran
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (A.B.); (J.Ł.); (F.B.)
| | - Oliwia Pomarańska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (A.B.); (J.Ł.); (F.B.)
| | - Daria Mykhailova
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (A.B.); (J.Ł.); (F.B.)
| | - Anna Dunal
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (A.B.); (J.Ł.); (F.B.)
| | - Anita Dudek
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Sahil Satam
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (A.B.); (J.Ł.); (F.B.)
| | - Tomasz Strzała
- Department of Genetics, Wrocław University of Environmental and Life Sciences, Ul. Kożuchowska 7, 51-631 Wrocław, Poland
| | - Jacek Łyczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (A.B.); (J.Ł.); (F.B.)
| | - Teresa Olejniczak
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (A.B.); (J.Ł.); (F.B.)
| | - Filip Boratyński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (A.B.); (J.Ł.); (F.B.)
| |
Collapse
|
2
|
Dikmen H, Goktas H, Demirbas F, Kayacan S, Ispirli H, Arici M, Turker M, Sagdic O, Dertli E. Multilocus sequence typing of L. bulgaricus and S. thermophilus strains from Turkish traditional yoghurts and characterisation of their techno-functional roles. Food Sci Biotechnol 2024; 33:625-635. [PMID: 38274192 PMCID: PMC10805743 DOI: 10.1007/s10068-023-01366-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 01/27/2024] Open
Abstract
In this study, Streptococcus thermophilus and Lactobacillus bulgaricus strains from traditional Turkish yoghurts were isolated, identified by 16S rRNA sequencing and genotypically 14 S. thermophilus and 6 L. bulgaricus strains were obtained as distinct strains by MLST analysis. Lactic acid production levels of the L. bulgaricus strains were higher than S. thermophilus strains. HPLC analysis showed that EPS monosaccharide composition of the strains mainly consisted of glucose and galactose. In general, all strains were found to be susceptible for antibiotics, except some strains were resistance to gentamicin and kanamycin. Apart from two strains of S. thermophilus, all strains displayed strong auto-aggregation level greater than 95% at 24 h incubation. S. thermophilus strains showed higher cell surface hydrophobicity than L. bulgaricus strains. This study demonstrated the isolation, identification, genotypic discrimination and techno-functional features of wild type yoghurt starter cultures which can potentially find place in industrial applications. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01366-2.
Collapse
Affiliation(s)
- Hilal Dikmen
- Food Engineering Department, Chemical and Metallurgical Faculty, Yildiz Technical University, Istanbul, Turkey
| | - Hamza Goktas
- Food Technology Programme, Vocational School, Istinye University, Topkapi Campus, Zeytinburnu, Istanbul, Turkey
| | - Fatmanur Demirbas
- Food Engineering Department, Chemical and Metallurgical Faculty, Yildiz Technical University, Istanbul, Turkey
| | - Selma Kayacan
- Food Engineering Department, Chemical and Metallurgical Faculty, Yildiz Technical University, Istanbul, Turkey
| | - Humeyra Ispirli
- Central Research Laboratory, Bayburt University, Bayburt, Turkey
| | - Muhammet Arici
- Food Engineering Department, Chemical and Metallurgical Faculty, Yildiz Technical University, Istanbul, Turkey
| | | | - Osman Sagdic
- Food Engineering Department, Chemical and Metallurgical Faculty, Yildiz Technical University, Istanbul, Turkey
| | - Enes Dertli
- Food Engineering Department, Chemical and Metallurgical Faculty, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
3
|
Lema NK, Gemeda MT, Woldesemayat AA. Recent Advances in Metagenomic Approaches, Applications, and Challenge. Curr Microbiol 2023; 80:347. [PMID: 37733134 DOI: 10.1007/s00284-023-03451-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/20/2023] [Indexed: 09/22/2023]
Abstract
Advances in metagenomics analysis with the advent of next-generation sequencing have extended our knowledge of microbial communities as compared to conventional techniques providing advanced approach to identify novel and uncultivable microorganisms based on their genetic information derived from a particular environment. Shotgun metagenomics involves investigating the DNA of the entire community without the requirement of PCR amplification. It provides access to study all genes present in the sample. On the other hand, amplicon sequencing targets taxonomically important marker genes, the analysis of which is restricted to previously known DNA sequences. While sequence-based metagenomics is used to analyze DNA sequences directly from the environment without the requirement of library construction and with limited identification of novel genes and products that can be complemented by functional genomics, function-based metagenomics requires fragmentation and cloning of extracted metagenome DNA in a suitable host with subsequent functional screening and sequencing clone for detection of a novel gene. Although advances were made in metagenomics, different challenges arise. This review provides insight into advances in the metagenomic approaches combined with next-generation sequencing, their recent applications highlighting the emerging ones, such as in astrobiology, forensic sciences, and SARS-CoV-2 infection diagnosis, and the challenges associated. This review further discusses the different types of metagenomics and outlines advancements in bioinformatics tools and their significance in the analysis of metagenomic datasets.
Collapse
Affiliation(s)
- Niguse K Lema
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Department of Biotechnology, Arba Minch University, Arba Minch, Ethiopia
| | - Mesfin T Gemeda
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Adugna A Woldesemayat
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.
- Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.
| |
Collapse
|
4
|
Hoxha R, Evstatieva Y, Nikolova D. Physicochemical, Rheological, and Sensory Characteristics of Yogurt Fermented by Lactic Acid Bacteria with Probiotic Potential and Bioprotective Properties. Foods 2023; 12:2552. [PMID: 37444290 DOI: 10.3390/foods12132552] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The applicability of two lactic acid bacterial strains with probiotic potential and bioprotective properties as additions in the starter culture in yogurt fermentation was examined. The studied strains, Lactobacillus delbrueckii subsp. bulgaricus KZM 2-11-3 and Lactiplantibacillus plantarum KC 5-12, inhibited the growth of Kluyveromyces lactis, Kluyveromyces marxianus, and Saccharomyces cerevisiae. The strain L. delbrueckii subsp. bulgaricus KZM 2-11-3 directly inhibited Escherichia coli. The important characteristics for the quality of the yogurt product, such as physicochemical parameters during fermentation and storage, rheological characteristics, and sensory changes during the storage of samples were determined. The yogurt samples with the strains did not differ in most parameters from the control yogurt with the commercial starter. The added strains showed stable viability in the yogurt samples during storage. The yogurt sample with L. delbrueckii subsp. bulgaricus KZM 2-11-3 and the sample with both strains based on the total evaluation were very similar to the control yogurt with the commercial starter. Using these strains as probiotic supplements to enrich the starter cultures in yogurt production will contribute to developing new products with benefits to human health.
Collapse
Affiliation(s)
- Ramize Hoxha
- Department of Biotechnology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| | - Yana Evstatieva
- Department of Biotechnology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| | - Dilyana Nikolova
- Department of Biotechnology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| |
Collapse
|
5
|
Gölbaşi G, Akin N, Konak Göktepe Ç, Demırcı T. Monitoring the changes in physicochemical, sensory properties and microbiota of village-type homemade yoghurts along three consecutive back-slopping procedures. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
6
|
Microbiological Characterization of Greek Galotyri Cheese PDO Products Relative to Whether They Are Marketed Fresh or Ripened. FERMENTATION 2022. [DOI: 10.3390/fermentation8100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Galotyri is the most popular traditional Greek PDO soft acid-curd cheese. This study compared the microbial numbers and types and characterized the lactic acid bacteria (LAB) biota of two artisan-type Galotyri PDO cheese varieties, one marketed fresh (Brand-K) and the other ripened (Brand-Z). Two retail batches of each cheese variety were analyzed, and a total of 102 LAB isolates were biochemically identified. LAB (7.2–9.3 log CFU/g) prevailed in all cheeses, followed by yeasts (5.8–6.8 log CFU/g). Typical starter strains of Streptococcus thermophilus and Lactobacillus delbrueckii were the most abundant species in all batches. However, the fresh Brand-K cheeses had 1–3 log units higher thermophilic starter LAB counts than the ripened Brand-Z cheeses, which contained a more diverse viable LAB biota comprising Lacticaseibacillus paracasei, Leuconostocmesenteroides, Lentilactobacillus (L. diolivorans, L. kefiri, L. hilgardii), Pediococcusinopinatus/parvulus, few spontaneous nonstarter thermophilic streptococci and lactobacilli, and Enterococcus faecium and E. faecalis at higher subdominant levels.Conversely, the fresh Brand-K cheeses were enriched in members of the Lactiplantibacillus plantarum group; other LAB species were sporadically isolated, including Lactococcus lactis. All retail cheeses were safe (pH 3.9–4.0). No Salmonella spp. or Listeria monocytogenes were detected in 25-g samples by culture enrichment; however, Listeria innocua and coagulase-positive staphylococci (850 CFU/g) survived in one ripened batch. Gram-negative bacteria were <100 CFU/g in all cheeses. In conclusion, ripening reduced the starter LAB viability but increased the nonstarter LAB species diversity in the present Galotyri PDO market cheeses.
Collapse
|
7
|
Beneficial Effects of Yoghurts and Probiotic Fermented Milks and Their Functional Food Potential. Foods 2022; 11:foods11172691. [PMID: 36076876 PMCID: PMC9455928 DOI: 10.3390/foods11172691] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Probiotic fermented milks and yoghurts are acidified and fermented by viable bacteria, usually L. bulgaricus and S. thermophilus, resulting in a thicker product with a longer shelf life. They are a nutrition-dense food, providing a good source of calcium, phosphorus, potassium, vitamin A, vitamin B2, and vitamin B12. Additionally, they deliver high biological value proteins and essential fatty acids. There is accumulating evidence suggesting that yoghurt and fermented milk consumption is related to a number of health advantages, including the prevention of osteoporosis, diabetes, and cardiovascular diseases, as well as the promotion of gut health and immune system modulation. This review aims at presenting and critically reviewing the beneficial effects from the consumption of probiotic fermented milks in human health, whilst revealing potential applications in the food industry.
Collapse
|
8
|
Microbiological and Metagenomic Characterization of a Retail Delicatessen Galotyri-Like Fresh Acid-Curd Cheese Product. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This study evaluated the microbial quality, safety, and ecology of a retail delicatessen Galotyri-like fresh acid-curd cheese traditionally produced by mixing fresh natural Greek yogurt with ‘Myzithrenio’, a naturally fermented and ripened whey cheese variety. Five retail cheese batches (mean pH 4.1) were analyzed for total and selective microbial counts, and 150 presumptive isolates of lactic acid bacteria (LAB) were characterized biochemically. Additionally, the most and the least diversified batches were subjected to a culture-independent 16S rRNA gene sequencing analysis. LAB prevailed in all cheeses followed by yeasts. Enterobacteria, pseudomonads, and staphylococci were present as <100 viable cells/g of cheese. The yogurt starters Streptococcus thermophilus and Lactobacillus delbrueckii were the most abundant LAB isolates, followed by nonstarter strains of Lactiplantibacillus, Lacticaseibacillus, Enterococcus faecium, E. faecalis, and Leuconostoc mesenteroides, whose isolation frequency was batch-dependent. Lactococcus lactis isolates were sporadic, except for one cheese batch. However, Lactococcus lactis, Enterobacteriaceae, Vibrionaceae, Salinivibrio, and Shewanellaceae were detected at fairly high relative abundances culture-independently, despite the fact that their viable counts in the cheeses were low or undetectable. Metagenomics confirmed the prevalence of S. thermophilus and Lb. delbrueckii. Overall, this delicatessen Galotyri-like cheese product was shown to be a rich pool of indigenous nonstarter LAB strains, which deserve further biotechnological investigation.
Collapse
|