1
|
Sarıyer RM, Edwards AD, Needs SH. Open Hardware for Microfluidics: Exploiting Raspberry Pi Singleboard Computer and Camera Systems for Customisable Laboratory Instrumentation. BIOSENSORS 2023; 13:948. [PMID: 37887141 PMCID: PMC10605846 DOI: 10.3390/bios13100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
The integration of Raspberry Pi miniature computer systems with microfluidics has revolutionised the development of low-cost and customizable analytical systems in life science laboratories. This review explores the applications of Raspberry Pi in microfluidics, with a focus on imaging, including microscopy and automated image capture. By leveraging the low cost, flexibility and accessibility of Raspberry Pi components, high-resolution imaging and analysis have been achieved in direct mammalian and bacterial cellular imaging and a plethora of image-based biochemical and molecular assays, from immunoassays, through microbial growth, to nucleic acid methods such as real-time-qPCR. The control of image capture permitted by Raspberry Pi hardware can also be combined with onboard image analysis. Open-source hardware offers an opportunity to develop complex laboratory instrumentation systems at a fraction of the cost of commercial equipment and, importantly, offers an opportunity for complete customisation to meet the users' needs. However, these benefits come with a trade-off: challenges remain for those wishing to incorporate open-source hardware equipment in their own work, including requirements for construction and operator skill, the need for good documentation and the availability of rapid prototyping such as 3D printing plus other components. These advances in open-source hardware have the potential to improve the efficiency, accessibility, and cost-effectiveness of microfluidic-based experiments and applications.
Collapse
|
2
|
Dembski S, Schwarz T, Oppmann M, Bandesha ST, Schmid J, Wenderoth S, Mandel K, Hansmann J. Establishing and testing a robot-based platform to enable the automated production of nanoparticles in a flexible and modular way. Sci Rep 2023; 13:11440. [PMID: 37454142 DOI: 10.1038/s41598-023-38535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Robotic systems facilitate relatively simple human-robot interaction for non-robot experts, providing the flexibility to implement different processes. In this context, shorter process times, as well as an increased product and process quality could be achieved. Robots short time-consuming processes, take over ergonomically unfavorable tasks and work efficiently all the time. In addition, flexible production is possible while maintaining or even increasing safety. This study describes the successful development of a dual-arm robot-based modular infrastructure and the establishment of an automated process for the reproducible production of nanoparticles. As proof of concept, a manual synthesis protocol for silica nanoparticle preparation with a diameter of about 200 nm as building blocks for photonic crystals was translated into a fully automated process. All devices and components of the automated system were optimized and adapted according to the synthesis requirements. To demonstrate the benefit of the automated nanoparticle production, manual (synthesis done by lab technicians) and automated syntheses were benchmarked. To this end, different processing parameters (time of synthesis procedure, accuracy of dosage etc.) and the properties of the produced nanoparticles were compared. We demonstrate that the use of the robot not only increased the synthesis accuracy and reproducibility but reduced the personnel time and costs up to 75%.
Collapse
Affiliation(s)
- Sofia Dembski
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany.
- Department of Tissue Engineering and Regenerative Medicine TERM, University Hospital Würzburg, Röntgenring 11, 97070, Würzburg, Germany.
| | - Thomas Schwarz
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Maximilian Oppmann
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | | | - Jörn Schmid
- Goldfuß Engineering GmbH, Laboratory Automation, 72336, Balingen, Germany
| | - Sarah Wenderoth
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Karl Mandel
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91058, Erlangen, Germany
| | - Jan Hansmann
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
- Faculty of Electrical Engineering, University of Applied Sciences Würzburg-Schweinfurt, 97421, Schweinfurt, Germany
| |
Collapse
|
3
|
Zaslavsky J, Bannigan P, Allen C. Re-envisioning the design of nanomedicines: harnessing automation and artificial intelligence. Expert Opin Drug Deliv 2023; 20:241-257. [PMID: 36644850 DOI: 10.1080/17425247.2023.2167978] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Interest in nanomedicines has surged in recent years due to the critical role they have played in the COVID-19 pandemic. Nanoformulations can turn promising therapeutic cargo into viable products through improvements in drug safety and efficacy profiles. However, the developmental pathway for such formulations is non-trivial and largely reliant on trial-and-error. Beyond the costly demands on time and resources, this traditional approach may stunt innovation. The emergence of automation, artificial intelligence (AI) and machine learning (ML) tools, which are currently underutilized in pharmaceutical formulation development, offers a promising direction for an improved path in the design of nanomedicines. AREAS COVERED the potential of harnessing experimental automation and AI/ML to drive innovation in nanomedicine development. The discussion centers on the current challenges in drug formulation research and development, and the major advantages afforded through the application of data-driven methods. EXPERT OPINION The development of integrated workflows based on automated experimentation and AI/ML may accelerate nanomedicine development. A crucial step in achieving this is the generation of high-quality, accessible datasets. Future efforts to make full use of these tools can ultimately contribute to the development of more innovative nanomedicines and improved clinical translation of formulations that rely on advanced drug delivery systems.
Collapse
Affiliation(s)
- Jonathan Zaslavsky
- Leslie Dan Faculty of Pharmacy, University of Toronto, M5S 3M2, Toronto, ON, Canada
| | - Pauric Bannigan
- Leslie Dan Faculty of Pharmacy, University of Toronto, M5S 3M2, Toronto, ON, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, M5S 3M2, Toronto, ON, Canada
| |
Collapse
|
4
|
Protopapa G, Bono N, Visone R, D'Alessandro F, Rasponi M, Candiani G. A new microfluidic platform for the highly reproducible preparation of non-viral gene delivery complexes. LAB ON A CHIP 2022; 23:136-145. [PMID: 36477137 DOI: 10.1039/d2lc00744d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Transfection describes the delivery of exogenous nucleic acids (NAs) to cells utilizing non-viral means. In the last few decades, scientists have been doing their utmost to design ever more effective transfection reagents. These are eventually mixed with NAs to give rise to gene delivery complexes, which must undergo characterization, testing, and further refinement through the sequential reiteration of these steps. Unfortunately, although microfluidics offers distinct advantages over the canonical approaches to preparing particles, the systems available do not address the most frequent and practical quest for the simultaneous generation of multiple polymer-to-NA ratios (N/Ps). Herein, we developed a user-friendly microfluidic cartridge to repeatably prepare non-viral gene delivery particles and screen across a range of seven N/Ps at once or significant volumes of polyplexes at a given N/P. The microchip is equipped with a chaotic serial dilution generator for the automatic linear dilution of the polymer to the downstream area, which encompasses the NA divider to dispense equal amounts of DNA to the mixing area, enabling the formation of particles at seven N/Ps eventually collected in individual built-in tanks. This is the first example of a stand-alone microfluidic cartridge for the fast and repeatable preparation of non-viral gene delivery complexes at different N/Ps and their storage.
Collapse
Affiliation(s)
- Giovanni Protopapa
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.
| | - Nina Bono
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.
| | - Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Fabio D'Alessandro
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Gabriele Candiani
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.
| |
Collapse
|
5
|
Special Issue on “Advances in Microfluidics Technology for Diagnostics and Detection”. Processes (Basel) 2021. [DOI: 10.3390/pr9050854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years microfluidics and lab-on-a-chip havecome to the forefront in diagnostics and detection [...]
Collapse
|