1
|
Wawoczny A, Gillner D. The Most Potent Natural Pharmaceuticals, Cosmetics, and Food Ingredients Isolated from Plants with Deep Eutectic Solvents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37433265 PMCID: PMC10375538 DOI: 10.1021/acs.jafc.3c01656] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
There is growing interest in reducing the number of synthetic products or additives and replacing them with natural ones. The pharmaceutical, cosmetic, and food industries are especially focused on natural and bioactive chemicals isolated from plants or microorganisms. The main challenge here is to develop efficient and ecological methods for their isolation. According to the strategies and rules of sustainable development and green chemistry, green solvents and environmentally friendly technologies must be used. The application of deep eutectic solvents as efficient and biodegradable solvents seems to be a promising alternative to traditional methods. They are classified as being green and ecological but, most importantly, very efficient extraction media compared to organic solvents. The aim of this review is to present the recent findings on green extraction, as well as the biological activities and the possible applications of natural plant ingredients, namely, phenolics, flavonoids, terpenes, saponins, and some others. This paper thoroughly reviews modern, ecological, and efficient extraction methods with the use of deep eutectic solvents (DESs). The newest findings, as well as the factors influencing the efficiency of extraction, such as water content, and hydrogen bond donor and acceptor types, as well as the extraction systems, are also discussed. New solutions to the major problem of separating DESs from the extract and for solvent recycling are also presented.
Collapse
Affiliation(s)
- Agata Wawoczny
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Danuta Gillner
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| |
Collapse
|
2
|
Duda-Madej A, Kozłowska J, Baczyńska D, Krzyżek P. Ether Derivatives of Naringenin and Their Oximes as Factors Modulating Bacterial Adhesion. Antibiotics (Basel) 2023; 12:1076. [PMID: 37370395 PMCID: PMC10294875 DOI: 10.3390/antibiotics12061076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Because of the close connection between adhesion and many vital cellular functions, the search for new compounds modulating the adhesion of bacteria belonging to the intestinal microbiota is a great challenge and a clinical need. Based on our previous studies, we discovered that O-lkyl naringenin derivatives and their oximes exhibit antimicrobial activity against antibiotic-resistant pathogens. The current study was aimed at determining the modulatory effect of these compounds on the adhesion of selected representatives of the intestinal microbiota: Escherichia coli, a commensal representative of the intestinal microbiota, and Enterococcus faecalis, a bacterium that naturally colonizes the intestines but has disease-promoting potential. To better reflect the variety of real-life scenarios, we performed these studies using two different intestinal cell lines: the physiologically functioning ("healthy") 3T3-L1 cell line and the disease-mimicking, cancerous HT-29 line. The study was performed in vitro under static and microfluidic conditions generated by the Bioflux system. We detected the modulatory effect of the tested O-alkyl naringenin derivatives on bacterial adhesion, which was dependent on the cell line studied and was more significant for E. coli than for E. faecalis. In addition, it was noticed that this activity was affected by the concentration of the tested compound and its structure (length of the carbon chain). In summary, O-alkyl naringenin derivatives and their oximes possess a promising modulatory effect on the adhesion of selected representatives of the intestinal microbiota.
Collapse
Affiliation(s)
- Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| | - Joanna Kozłowska
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland;
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland;
| | - Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| |
Collapse
|
3
|
Monteiro M, Sampaio-Dias IE, Mateus N, de Freitas V, Cruz L. Preparation of 10-(hexylcarbamoyl)pyranomalvidin-3-glucoside from 10-carboxypyranomalvidin-3-glucoside using carbodiimide chemistry. Food Chem 2022; 393:133429. [PMID: 35751214 DOI: 10.1016/j.foodchem.2022.133429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/10/2022] [Accepted: 06/06/2022] [Indexed: 11/04/2022]
Abstract
Anthocyanins and pyranoanthocyanins are appealing natural pigments for replacement of synthetic ones. However, due to instability and solubility issues, lipophilization process of anthocyanins has raised as a valuable and efficient strategy to extend their stability and affinity into liposoluble formulations and enhance their unique physicochemical and biological properties. In this work, 10-carboxypyranomalvidin-3-glucoside was functionalized with hexylamine via carbodiimide chemistry compatible with the absence of hydroxyl protecting groups. A new amide conjugate attached to an alkyl chain with better hydrophobic features was obtained and isolated from its precursor. Mass spectrometry, FTIR, and NMR spectroscopy confirmed that the lipophilization site took place at the carboxyl group and the octanol-water partition coefficient determined by UV-Vis revealed its superior affinity for non-polar media. Overall, we reported a new pyranoanthocyanin lipophilic derivative for the first time which encourage further investigation for this novel class of compounds towards their incorporation into lipid-based foods and cosmetic formulations.
Collapse
Affiliation(s)
- Marta Monteiro
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua Do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Ivo E Sampaio-Dias
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua Do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Nuno Mateus
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua Do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Victor de Freitas
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua Do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Luís Cruz
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua Do Campo Alegre, 687, 4169-007 Porto, Portugal.
| |
Collapse
|
4
|
Li L, Zhou P, Wang Y, Pan Y, Chen M, Tian Y, Zhou H, Yang B, Meng H, Zheng J. Antimicrobial activity of cyanidin-3-O-glucoside-lauric acid ester against Staphylococcus aureus and Escherichia coli. Food Chem 2022; 383:132410. [PMID: 35182879 DOI: 10.1016/j.foodchem.2022.132410] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/16/2022] [Accepted: 02/07/2022] [Indexed: 11/18/2022]
Abstract
Enzymatic acylation of anthocyanin with fatty acid improves its lipophilic solubility and application potential. Nevertheless, evaluation of functional properties of product is premise for application. This study investigated the antimicrobial potential and the underlying mechanisms of an acylated anthocyanin, namely, cyanidin-3-O-glucoside-lauric acid ester (C3G-LA), to provide guidelines for its application. C3G-LA exhibited outstanding antibacterial activity against Staphylococcus aureus [minimum inhibitory concentration (MIC) = 0.3125 mg/mL] and modest activity against Escherichia coli (MIC = 5 mg/mL). Moreover, C3G-LA manifested bactericide ability against S. aureus at 0.625 mg/mL. Decreases in membrane integrity (by 96% and 92% at MIC in S. aureus and E. coli, respectively), intracellular ATP concentration (by 96% and 92%) and intracellular pH (by 11% and 9%) and changes in cellular morphology altogether indicated the dysfunction of cell membrane under C3G-LA treatment. These findings demonstrated that C3G-LA could be adopted as an alternative food preservative against foodborne pathogens.
Collapse
Affiliation(s)
- Lili Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, Guangdong, China
| | - Ping Zhou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China; InnoStar Bio-Tech Nantong Site, Nantong 226133, Jiangsu, China
| | - Yidi Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Ying Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong, China
| | - Min Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Ye Tian
- Food Chemistry and Food Development Unit, Department of Life Technologies, University of Turku, Turku FI-20014, Finland
| | - Hua Zhou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Baoru Yang
- Food Chemistry and Food Development Unit, Department of Life Technologies, University of Turku, Turku FI-20014, Finland
| | - Hecheng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China; Zhongshan Hongli Health Food Industry Research Institute Co., Ltd, Zhongshan 528400, Guangdong, China.
| |
Collapse
|
5
|
He J, Ye S, Correia P, Fernandes I, Zhang R, Wu M, Freitas V, Mateus N, Oliveira H. Dietary polyglycosylated anthocyanins, the smart option? A comprehensive review on their health benefits and technological applications. Compr Rev Food Sci Food Saf 2022; 21:3096-3128. [PMID: 35534086 DOI: 10.1111/1541-4337.12970] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/01/2022] [Accepted: 04/07/2022] [Indexed: 01/01/2023]
Abstract
Over the years, anthocyanins have emerged as one of the most enthralling groups of natural phenolic compounds and more than 700 distinct structures have already been identified, illustrating the exceptional variety spread in nature. The interest raised around anthocyanins goes way beyond their visually appealing colors and their acknowledged structural and biological properties have fueled intensive research toward their application in different contexts. However, the high susceptibility of monoglycosylated anthocyanins to degradation under certain external conditions might compromise their application. In that regard, polyglycosylated anthocyanins (PGA) might offer an alternative to overcome this issue, owing to their peculiar structure and consequent less predisposition to degradation. The most recent scientific and technological findings concerning PGA and their food sources are thoroughly described and discussed in this comprehensive review. Different issues, including their physical-chemical characteristics, consumption, bioavailability, and biological relevance in the context of different pathologies, are covered in detail, along with the most relevant prospective technological applications. Due to their complex structure and acyl groups, most of the PGA exhibit an overall higher stability than the monoglycosylated ones. Their versatility allows them to act in a wide range of pathologies, either by acting directly in molecular pathways or by modulating the disease environment attributing an added value to their food sources. Their recent usage for technological applications has also been particularly successful in different industry fields including food and smart packaging or in solar energy production systems. Altogether, this review aims to put into perspective the current state and future research on PGA and their food sources.
Collapse
Affiliation(s)
- Jingren He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Shuxin Ye
- Yun-Hong Group Co. Ltd, Wuhan, China
| | - Patrícia Correia
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Iva Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Rui Zhang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Muci Wu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Victor Freitas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Nuno Mateus
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Hélder Oliveira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
6
|
Negm WA, El-Aasr M, Attia G, Alqahtani MJ, Yassien RI, Abo Kamer A, Elekhnawy E. Promising Antifungal Activity of Encephalartos laurentianus de Wild against Candida albicans Clinical Isolates: In Vitro and In Vivo Effects on Renal Cortex of Adult Albino Rats. J Fungi (Basel) 2022; 8:jof8050426. [PMID: 35628682 PMCID: PMC9144060 DOI: 10.3390/jof8050426] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 02/08/2023] Open
Abstract
Candida albicans can cause various infections, especially in immunocompromised patients. Its ability to develop resistance to the current antifungal drugs as well as its multiple virulence factors have rendered the problem even more complicated. Thus, in the present investigation, we elucidated an in vitro and in vivo antifungal activity of Encephalartos laurentianus methanol extract (ELME) against C. albicans clinical isolates for the first time. A phytochemical identification of 64 compounds was conducted in ELME using LC-MS/MS. Interestingly, ELME exhibited antifungal activity with MIC values that ranged from 32–256 µg/mL. Furthermore, we investigated the antibiofilm activity of ELME against the biofilms formed by C. albicans isolates. ELME displayed antibiofilm activity using a crystal violet assay as it decreased the percentages of cells, moderately and strongly forming biofilms from 62.5% to 25%. Moreover, the antibiofilm impact of ELME was elucidated using SEM and fluorescent microscope. A significant reduction in the biofilm formation by C. albicans isolates was observed. In addition, we observed that ELME resulted in the downregulation of the biofilm-related tested genes (ALS1, BCR1, PLB2, and SAP5) in 37.5% of the isolates using qRT-PCR. Besides, the in vivo antifungal activity of ELME on the kidney tissues of rats infected with C. albicans was investigated using histological and immunohistochemical studies. ELME was found to protect against C. albicans induced renal damage, decrease desmin and inducible nitric oxide synthase, increase alkaline phosphatase, and increase infected rats’ survival rate. Additionally, the cytotoxicity of ELME was elucidated on Human Skin Fibroblast normal cells using MTT assay. ELME had an IC50 of 31.26 µg/mL. Thus, we can conclude that ELME might be a promising future source for antifungal compounds.
Collapse
Affiliation(s)
- Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (M.E.-A.); (G.A.)
- Correspondence: (W.A.N.); (E.E.)
| | - Mona El-Aasr
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (M.E.-A.); (G.A.)
| | - Ghada Attia
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (M.E.-A.); (G.A.)
| | - Moneerah J. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Department of BioMolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Rania Ibrahim Yassien
- Department of Histology and Cell Biology, Faculty of Medicine, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Amal Abo Kamer
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
- Correspondence: (W.A.N.); (E.E.)
| |
Collapse
|
7
|
Shamsudin NF, Ahmed QU, Mahmood S, Ali Shah SA, Khatib A, Mukhtar S, Alsharif MA, Parveen H, Zakaria ZA. Antibacterial Effects of Flavonoids and Their Structure-Activity Relationship Study: A Comparative Interpretation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041149. [PMID: 35208939 PMCID: PMC8879123 DOI: 10.3390/molecules27041149] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022]
Abstract
According to the latest report released by the World Health Organization, bacterial resistance to well-known and widely available antibacterial drugs has become a significant and severe global health concern and a grim challenge to tackle in order to cure infections associated with multidrug-resistant pathogenic microorganisms efficiently. Consequently, various strategies have been orchestrated to cure the severe complications related to multidrug-resistant bacteria effectively. Some approaches involved the retardation of biofilm formation and multidrug-resistance pumps in bacteria as well as the discovery of new antimicrobial agents demonstrating different mechanisms of action. In this regard, natural products namely alkaloids, terpenoids, steroids, anthraquinone, flavonoids, saponins, tannins, etc., have been suggested to tackle the multidrug-resistant bacterial strains owing to their versatile pharmacological effects. Amongst these, flavonoids, also known as polyphenolic compounds, have been widely evaluated for their antibacterial property due to their tendency to retard the growth of a wide range of pathogenic microorganisms, including multidrug-resistant bacteria. The hydroxylation of C5, C7, C3′, and C4′; and geranylation or prenylation at C6 have been extensively studied to increase bacterial inhibition of flavonoids. On the other hand, methoxylation at C3′ and C5 has been reported to decrease flavonoids’ antibacterial action. Hence, the latest information on the antibacterial activity of flavonoids is summarized in this review, with particular attention to the structure–activity relationship of this broad class of natural compounds to discover safe and potent antibacterial agents as natural products.
Collapse
Affiliation(s)
- Nur Farisya Shamsudin
- Drug Design and Synthesis Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang D. M., Malaysia; (N.F.S.); (A.K.)
| | - Qamar Uddin Ahmed
- Drug Design and Synthesis Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang D. M., Malaysia; (N.F.S.); (A.K.)
- Correspondence: (Q.U.A.); or (Z.A.Z.)
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Department of Pharmaceutical Engineering, Faculty of Engineering Technology (Chemical), Gambang Campus, Universiti Malaysia Pahang (UMP), Kuantan 26300, Pahang D. M., Malaysia
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia;
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia
| | - Alfi Khatib
- Drug Design and Synthesis Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang D. M., Malaysia; (N.F.S.); (A.K.)
| | - Sayeed Mukhtar
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (S.M.); (H.P.)
| | - Meshari A. Alsharif
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia;
| | - Humaira Parveen
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (S.M.); (H.P.)
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
- Correspondence: (Q.U.A.); or (Z.A.Z.)
| |
Collapse
|
8
|
Marathe SJ, Dedhia N, Singhal RS. Esterification of sugars and polyphenols with fatty acids: techniques, bioactivities, and applications. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Ursolic Acid Suppresses Oncostatin M Expression through Blockade of PI3K/Akt/NF-κB Signaling Processes in Neutrophil-like Differentiated HL-60 Cells. Processes (Basel) 2022. [DOI: 10.3390/pr10020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Cytokine oncostatin M (OSM) plays an important role in a variety of inflammatory reactions and is mainly produced in neutrophils in inflammatory diseases. While natural pentacyclic triterpenoid ursolic acid (UA) possesses a wide range of beneficial effects, such as anti-oxidant, anti-tumor, and anti-inflammatory, the regulatory processes of OSM suppression by UA in neutrophils are still poorly understood. This study was aimed at examining how UA regulates OSM expression in neutrophil-like differentiated (d)HL-60 cells. Enzyme-linked immunosorbent assay, quantitative polymerase chain reaction, and immunoblotting were employed to analyze the effects of UA. Whereas stimulation with granulocyte-macrophage colony-stimulating factor (GM-CSF) led to elevations of OSM production and mRNA expression, these elevations were lowered by treatment with UA in neutrophil-like dHL-60 cells. When the cells were exposed to GM-CSF, phosphorylated levels of phosphatidylinositol 3-kinase, Akt, and nuclear factor-kB were upregulated. However, the upregulations were diminished by treatment with UA in neutrophil-like dHL-60 cells. The results of this study proposed that UA might relieve inflammatory diseases via inhibition of OSM.
Collapse
|
10
|
Correia P, Araújo P, Ribeiro C, Oliveira H, Pereira AR, Mateus N, de Freitas V, Brás NF, Gameiro P, Coelho P, Bessa LJ, Oliveira J, Fernandes I. Anthocyanin-Related Pigments: Natural Allies for Skin Health Maintenance and Protection. Antioxidants (Basel) 2021; 10:antiox10071038. [PMID: 34203482 PMCID: PMC8300807 DOI: 10.3390/antiox10071038] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Human skin is commonly described as a particularly dynamic and complex environment, with a physiological balance continuously orchestrated by numerous internal and external factors. Intrinsic aging, exposure to UV radiation and skin pathogens are some of the key players that account for dermatological alterations and ailments. In this regard, this study intended to explore the potential skin-health beneficial properties of a group of molecules belonging to the anthocyanin family: cyanidin- and malvidin-3-O-glucosides and some of their structurally related pigments, resulting in a library of compounds with different structural properties and color hues. The inclusion of both purified compounds and crude extracts provided some insights into their distinctive effects when tested as individual agents or as part of multicomponent mixtures. Overall, most of the compounds were found to reduce biofilm production by S. aureus and P. aeruginosa reference strains, exhibit UV-filter capacity, attenuate the production of reactive oxygen species in human skin keratinocytes and fibroblasts and also showed inhibitory activity of skin-degrading enzymes, in the absence of cytotoxic effects. Carboxypyranocyanidin-3-O-glucoside stood out for its global performance which, combined with its greater structural stability, makes this a particular interesting compound for potential incorporation in topical formulations. Results provide strong evidence of the skin protective effects of these pigments, supporting their further application for cosmeceutical purposes.
Collapse
|