1
|
Takayama T, Maki H. Independent Concentration Manipulation Using Sidewall-Driven Micromixer. MICROMACHINES 2024; 15:869. [PMID: 39064379 PMCID: PMC11278770 DOI: 10.3390/mi15070869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
Lab-on-a-chip technology has been developed to streamline biochemical experiments by providing experimental environments in microscopic areas. Due to the difficulty of mixing chemicals in such small channels, various micromixers have been created. Our proposed sidewall-driven micromixer offers easy fabrication and precise control over mixing concentrations. In our previous study, we successfully generated concentration gradients by simultaneously mixing multiple chambers using a single actuator. However, it is not possible to mix different chemicals in each chamber. In this study, we developed a sidewall-driven micromixer that enables independent mixing in each chamber by installing one actuator per chamber. Experimental results showed that different conditions were achieved in each chamber using both microbead-mixture water and colored water. Thus, this mixer can be used to manipulate concentrations regardless of whether the mixing targets are particles or fluids.
Collapse
|
2
|
Juraeva M, Kang DJ. Design and Mixing Analysis of a Passive Micromixer with Circulation Promoters. MICROMACHINES 2024; 15:831. [PMID: 39064343 PMCID: PMC11278850 DOI: 10.3390/mi15070831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024]
Abstract
A novel passive micromixer equipped with circulation promoters is proposed, and its mixing performance is simulated over a broad range of Reynolds numbers (0.1≤Re≤100). To evaluate the effectiveness of the circulation promoters, three different configurations are analyzed in terms of the degree of mixing (DOM) at the outlet and the associated pressure drop. Compared to other typical passive micromixers, the circulation promoter is shown to significantly enhance mixing performance. Among the three configurations of circulation promoters, Case 3 demonstrates the best performance, with a DOM exceeding 0.96 across the entire range of Reynolds numbers. At Re = 1, the DOM of Case 3 is 3.7 times larger than that of a modified Tesla micromixer, while maintaining a comparable pressure drop. The mixing enhancement of the present micromixer is particularly significant in the low and intermediate ranges of Reynolds numbers (Re<40). In the low range of Reynolds numbers (Re≤1), the mixing enhancement is primarily due to circulation promoters directing fluid flow from a concave wall to the opposite convex wall. In the intermediate range of Reynolds numbers (2≤Re<40), the mixing enhancement results from fluid flowing from one concave wall to another concave wall on the opposite side.
Collapse
Affiliation(s)
| | - Dong-Jin Kang
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-ro, Gyoungsan 38541, Republic of Korea
| |
Collapse
|
3
|
Cai S, Jin Y, Lin Y, He Y, Zhang P, Ge Z, Yang W. Micromixing within microfluidic devices: Fundamentals, design, and fabrication. BIOMICROFLUIDICS 2023; 17:061503. [PMID: 38098692 PMCID: PMC10718651 DOI: 10.1063/5.0178396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023]
Abstract
As one of the hot spots in the field of microfluidic chip research, micromixers have been widely used in chemistry, biology, and medicine due to their small size, fast response time, and low reagent consumption. However, at low Reynolds numbers, the fluid motion relies mainly on the diffusive motion of molecules under laminar flow conditions. The detrimental effect of laminar flow leads to difficulties in achieving rapid and efficient mixing of fluids in microchannels. Therefore, it is necessary to enhance fluid mixing by employing some external means. In this paper, the classification and mixing principles of passive (T-type, Y-type, obstructed, serpentine, three-dimensional) and active (acoustic, electric, pressure, thermal, magnetic field) micromixers are reviewed based on the presence or absence of external forces in the micromixers, and some experiments and applications of each type of micromixer are briefly discussed. Finally, the future development trends of micromixers are summarized.
Collapse
Affiliation(s)
- Shuxiang Cai
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Yawen Jin
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Yun Lin
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Yingzheng He
- School of Mechanical Engineering, Naval Aviation University, Yantai 264005, China
| | - Peifan Zhang
- School of Mechanical Engineering, Naval Aviation University, Yantai 264005, China
| | - Zhixing Ge
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
4
|
Huang Y, Liu C, Feng Q, Sun J. Microfluidic synthesis of nanomaterials for biomedical applications. NANOSCALE HORIZONS 2023; 8:1610-1627. [PMID: 37723984 DOI: 10.1039/d3nh00217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The field of nanomaterials has progressed dramatically over the past decades with important contributions to the biomedical area. The physicochemical properties of nanomaterials, such as the size and structure, can be controlled through manipulation of mass and heat transfer conditions during synthesis. In particular, microfluidic systems with rapid mixing and precise fluid control are ideal platforms for creating appropriate synthesis conditions. One notable example of microfluidics-based synthesis is the development of lipid nanoparticle (LNP)-based mRNA vaccines with accelerated clinical translation and robust efficacy during the COVID-19 pandemic. In addition to LNPs, microfluidic systems have been adopted for the controlled synthesis of a broad range of nanomaterials. In this review, we introduce the fundamental principles of microfluidic technologies including flow field- and multiple field-based methods for fabricating nanoparticles, and discuss their applications in the biomedical field. We conclude this review by outlining several major challenges and future directions in the implementation of microfluidic synthesis of nanomaterials.
Collapse
Affiliation(s)
- Yanjuan Huang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Liu
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Feng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Juraeva M, Kang DJ. Design and Mixing Analysis of a Passive Micromixer Based on Curly Baffles. MICROMACHINES 2023; 14:1795. [PMID: 37763958 PMCID: PMC10535907 DOI: 10.3390/mi14091795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
A novel passive micromixer based on curly baffles is proposed and optimized through the signal-to-noise analysis of various design parameters. The mixing performance of the proposed design was evaluated across a wide Reynolds number range, from 0.1 to 80. Through the analysis, the most influential parameter was identified, and its value was found to be constant regardless of the mixing mechanism. The optimized design, refined using the signal-to-noise analysis, demonstrated a significant enhancement of mixing performance, particularly in the low Reynolds number range (Re< 10). The design set obtained at the diffusion dominance range shows the highest degree of mixing (DOM) in the low Reynolds number range of Re< 10, while the design set optimized for the convection dominance range exhibited the least pressure drop across the entire Reynolds number spectrum (Re< 80). The present design approach proved to be a practical tool for identifying the most influential design parameter and achieving excellent mixing and pressure drop characteristics. The enhancement is mainly due to the curvature of the most influential design parameter.
Collapse
Affiliation(s)
| | - Dong-Jin Kang
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| |
Collapse
|
6
|
Ran J, Wang X, Liu Y, Yin S, Li S, Zhang L. Microreactor-based micro/nanomaterials: fabrication, advances, and outlook. MATERIALS HORIZONS 2023. [PMID: 37139613 DOI: 10.1039/d3mh00329a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Micro/nanomaterials are widely used in optoelectronics, environmental materials, bioimaging, agricultural industries, and drug delivery owing to their marvelous features, such as quantum tunneling, size, surface and boundary, and Coulomb blockade effects. Recently, microreactor technology has opened up broad prospects for green and sustainable chemical synthesis as a powerful tool for process intensification and microscale manipulation. This review focuses on recent progress in the microreactor synthesis of micro/nanomaterials. First, the fabrication and design principles of existing microreactors for producing micro/nanomaterials are summarized and classified. Afterwards, typical examples are shown to demonstrate the fabrication of micro/nanomaterials, including metal nanoparticles, inorganic nonmetallic nanoparticles, organic nanoparticles, Janus particles, and MOFs. Finally, the future research prospects and key issues of microreactor-based micro/nanomaterials are discussed. In short, microreactors provide new ideas and methods for the synthesis of micro/nanomaterials, which have huge potential and inestimable possibilities in large-scale production and scientific research.
Collapse
Affiliation(s)
- Jianfeng Ran
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Xuxu Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Yuanhong Liu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Shaohua Yin
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Shiwei Li
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Libo Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| |
Collapse
|
7
|
Lee J, Lee S, Lee M, Prakash R, Kim H, Cho G, Lee J. Enhancing Mixing Performance in a Rotating Disk Mixing Chamber: A Quantitative Investigation of the Effect of Euler and Coriolis Forces. MICROMACHINES 2022; 13:mi13081218. [PMID: 36014138 PMCID: PMC9416410 DOI: 10.3390/mi13081218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023]
Abstract
Lab-on-a-CD (LOCD) is gaining importance as a diagnostic platform due to being low-cost, easy-to-use, and portable. During LOCD usage, mixing and reaction are two processes that play an essential role in biochemical applications such as point-of-care diagnosis. In this paper, we numerically and experimentally investigate the effects of the Coriolis and Euler forces in the mixing chamber during the acceleration and deceleration of a rotating disk. The mixing performance is investigated under various conditions that have not been reported, such as rotational condition, chamber aspect ratio at a constant volume, and obstacle arrangement in the chamber. During disk acceleration and deceleration, the Euler force difference in the radial direction causes rotating flows, while the Coriolis force induces perpendicular vortices. Increasing the maximum rotational velocity improves the maximum rotational displacement, resulting in better mixing performance. A longer rotational period increases the interfacial area between solutions and enhances mixing. Mixing performance also improves when there is a substantial difference between Euler forces at the inner and outer radii. Furthermore, adding obstacles in the angular direction also passively promotes or inhibits mixing by configuration. This quantitative investigation provides valuable information for designing and developing high throughput and multiplexed point-of-care LOCDs.
Collapse
Affiliation(s)
- Jihyeong Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (J.L.); (S.L.)
| | - Saebom Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (J.L.); (S.L.)
| | - Minki Lee
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea;
| | - Ritesh Prakash
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea;
- Research Engineering Center for R2R Printed Flexible, Sungkyunkwan University, Suwon 16419, Korea
| | - Hyejeong Kim
- School of Mechanical Engineering, Korea University, Seoul 02841, Korea;
| | - Gyoujin Cho
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea;
- Research Engineering Center for R2R Printed Flexible, Sungkyunkwan University, Suwon 16419, Korea
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (G.C.); (J.L.)
| | - Jinkee Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (J.L.); (S.L.)
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea;
- Correspondence: (G.C.); (J.L.)
| |
Collapse
|
8
|
Buglie WLN, Tamrin KF, Sheikh NA, Yasin MFM, Mohamaddan S. Enhanced Fluid Mixing Using a Reversed Multistage Tesla Micromixer. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202200055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- William L. N. Buglie
- Universiti Malaysia Sarawak (UNIMAS) Department of Mechanical and Manufacturing Engineering Faculty of Engineering 94300 Kota Samarahan Sarawak Malaysia
| | - Khairul Fikri Tamrin
- Universiti Malaysia Sarawak (UNIMAS) Department of Mechanical and Manufacturing Engineering Faculty of Engineering 94300 Kota Samarahan Sarawak Malaysia
| | - Nadeem Ahmed Sheikh
- International Islamic University Department of Mechanical Engineering Faculty of Engineering Islamabad Pakistan
| | - Mohd Fairus Mohd Yasin
- Universiti Teknologi Malaysia High Speed Reacting Flow Laboratory School of Mechanical Engineering Faculty of Engineering Skudai Johor Malaysia
| | - Shahrol Mohamaddan
- Universiti Malaysia Sarawak (UNIMAS) Department of Mechanical and Manufacturing Engineering Faculty of Engineering 94300 Kota Samarahan Sarawak Malaysia
- Shibaura Institute of Technology Department of Bioscience and Engineering College of Systems Engineering and Science Saitama Japan
| |
Collapse
|