1
|
Shankar S, Mohanty AK, DeEll JR, Carter K, Lenz R, Misra M. Advances in antimicrobial techniques to reduce postharvest loss of fresh fruit by microbial reduction. NPJ SUSTAINABLE AGRICULTURE 2024; 2:25. [PMID: 39759422 PMCID: PMC11698397 DOI: 10.1038/s44264-024-00029-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 10/08/2024] [Indexed: 01/07/2025]
Abstract
This review will provide new ideas for preserving fruits and decreasing fruit waste. This review outlines and evaluates research concerning postharvest fruit preservation employing antimicrobial strategies, which involve the integration of biological control alongside physical or chemical methods. The concurrent deployment of two or three of these techniques, particularly biological approaches, has demonstrated enhanced and synergistic antimicrobial outcomes in practical scenarios.
Collapse
Affiliation(s)
- Shiv Shankar
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
- School of Engineering, Thornbrough Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
| | - Amar K. Mohanty
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
- School of Engineering, Thornbrough Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
| | - Jennifer R. DeEll
- Ontario Ministry of Agriculture, Food and Rural Affairs, Simcoe Research Station, 1283 Blueline Road, Simcoe, ON Canada
| | - Kathryn Carter
- Ontario Ministry of Agriculture, Food and Rural Affairs, Simcoe Research Station, 1283 Blueline Road, Simcoe, ON Canada
| | - Ruben Lenz
- Advanced Micro Polymers Inc., Steeles Ave E, Milton, ON Canada
| | - Manjusri Misra
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
- School of Engineering, Thornbrough Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
| |
Collapse
|
2
|
Caner C, Tiryaki K, Pala ÇU, Yüceer M. Combined effect of electrolyzed water (EW) and sonication with equilibrium modified atmosphere packaging for prolonging storage stability of fresh strawberry. FOOD SCI TECHNOL INT 2024:10820132241227009. [PMID: 38280215 DOI: 10.1177/10820132241227009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
This research focuses on the effectiveness of electrolyzed water (50 and 100 ppm for 3 min), ultrasonication (80 W for 3 min), and their combinations on fresh strawberries, which are then packaged using microperforated film to enhance their storage stability. The gas composition in the headspace, pH, soluble solids, color (L*, a*, b*, and ΔE* values), anthocyanins, total phenolics, and texture profile was evaluated for the 35 days of storage at +4 °C. The lowest weight loss was measured at about 100 ppm electrolyzed water (EW; 0.47%), and the highest one was in the control group (0.57%) after storage. At the end of the storage, O2 in the headspace decreased from 20.90% to 10.50-8.10% and CO2 was accumulated from 0.03% to 16.4-14.34%. The results showed that soluble solids decreased (9.95 to 8.48-7.85 °Bx) and pH values increased (3.34 to 3.79-3.91) during storage. At the end of the storage, the total phenolics in the control group decreased by the most during storage (from 1209.09 ppm to 808.00 ppm), whereas the 50 ppm EW group had the highest (931.66 ppm). Further, the significantly highest anthocyanin amount was found to be 143.86 ppm in the 100 ppm EW group at the end of 28 days of storage. The EW can significantly delay the degradation of anthocyanin over the storage period. The sonication at 100 ppm EW damages strawberry tissues, reducing their hardness. The lowest decay rate was found in fruits treated with 100 ppm EW (41.67%), followed by 50 ppm EW (58.33%), compared to the control (75.00%). This study reveals that applications of the 50 ppm EW and also 50 pm EW combined with ultrasonication have great potential in the extending storage stability of the fresh strawberries.
Collapse
Affiliation(s)
- Cengiz Caner
- Department of Food Engineering, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Kübra Tiryaki
- Department of Food Engineering, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Çiğdem Uysal Pala
- Department of Food Engineering, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Muhammed Yüceer
- Department of Food Processing, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
3
|
Dianty R, Hirano J, Anzai I, Kanai Y, Hayashi T, Morimoto M, Kataoka-Nakamura C, Kobayashi S, Uemura K, Ono C, Watanabe T, Kobayashi T, Murakami K, Kikuchi K, Hotta K, Yoshikawa T, Taguwa S, Matsuura Y. Electrolyzed hypochlorous acid water exhibits potent disinfectant activity against various viruses through irreversible protein aggregation. Front Microbiol 2023; 14:1284274. [PMID: 37928667 PMCID: PMC10625411 DOI: 10.3389/fmicb.2023.1284274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
It is essential to employ efficient measures to prevent the transmission of pathogenic agents during a pandemic. One such method involves using hypochlorous acid (HClO) solution. The oxidative properties of HClO water (HAW) can contribute to its ability to eliminate viral particles. Here, we examined a highly purified slightly acidic hypochlorous acid water (Hp-SA-HAW) obtained from the reverse osmosis membrane treatment of an electrolytically-generated SA-HAW for its anti-viral activity and mode of action on viral proteins. Hp-SA-HAW exhibited broad-spectrum antiviral effects against various viruses, including adenovirus, hepatitis B virus, Japanese encephalitis virus (JEV), and rotavirus. Additionally, Hp-SA-HAW treatment dose-dependently resulted in irreversibly aggregated multimers of the JEV envelope and capsid proteins. However, Hp-SA-HAW treatment had no discernible effect on viral RNA, indicating that Hp-SA-HAW acts against amino acids rather than nucleic acids. Furthermore, Hp-SA-HAW substantially reduced the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including the ancestral variant and other multiple variants. Hp-SA-HAW treatment induced the aggregation of the SARS-CoV-2 spike and nuclear proteins and disrupted the binding of the purified spike protein of SARS-CoV-2 to human ACE2. This study demonstrates that the broad-spectrum virucidal activity of highly purified HClO is attributed to viral protein aggregation of virion via protein oxidation.
Collapse
Affiliation(s)
- Rahmi Dianty
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Junki Hirano
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Itsuki Anzai
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yuta Kanai
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tsuyoshi Hayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masae Morimoto
- Innovative Vaccine Research and Development Center, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Chikako Kataoka-Nakamura
- Innovative Vaccine Research and Development Center, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Sakura Kobayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kentaro Uemura
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Chikako Ono
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tokiko Watanabe
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Takeshi Kobayashi
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Kosuke Murakami
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenji Kikuchi
- Louis Pasteur Center for Medical Research, Kyoto, Japan
| | | | | | - Shuhei Taguwa
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Chang HY, Gui CY, Huang TC, Hung YC, Chen TY. Quantitative Proteomic Analysis on the Slightly Acidic Electrolyzed Water Triggered Viable but Non-Culturable Listeria monocytogenes. Int J Mol Sci 2023; 24:10616. [PMID: 37445793 DOI: 10.3390/ijms241310616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
This study undertakes a comprehensive exploration of the impact of slightly acidic electrolyzed water (SAEW) on Listeria monocytogenes, a common foodborne pathogen, with a particular focus on understanding the molecular mechanisms leading to the viable but nonculturable (VBNC) state. Given the widespread application of SAEW as an effective disinfectant in the food industry, uncovering these molecular pathways is crucial for improving food safety measures. We employed tandem mass tags (TMT), labeling proteomic techniques and LC-MS/MS to identify differentially expressed proteins under two doses of SAEW conditions. We indicated 203 differential expressed proteins (DEPs), including 78 up-regulated and 125 down-regulated DEPs. The functional enrichment analysis of these proteins indicated that ribosomes, biosynthesis of secondary metabolites, and aminoacyl-tRNA biosynthesis were enriched functions affected by SAEW. Further, we delved into the role of protein chlorination, a potential consequence of reactive chlorine species generated during the SAEW production process, by identifying 31 chlorinated peptides from 22 proteins, with a dominant sequence motif of Rxxxxx[cY] and functionally enriched in translation. Our findings suggest that SAEW might prompt alterations in the protein translation process and trigger compensatory ribosome biosynthesis. However, an imbalance in the levels of elongation factors and AARSs could hinder recovery, leading to the VBNC state. This research carries substantial implications for food safety and sanitation, as it adds to our understanding of the SAEW-induced VBNC state in L. monocytogenes and offers potential strategies for its control.
Collapse
Affiliation(s)
- Hsin-Yi Chang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- Department of Research and Development, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chin-Ying Gui
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Tsui-Chin Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yen-Con Hung
- Department of Food Science & Technology, University of Georgia, Griffin, GA 30223-1797, USA
| | - Tai-Yuan Chen
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|
5
|
Inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on stainless steel by synergistic effects of tap water-based neutral electrolyzed water and lactic acid. Food Microbiol 2023; 112:104233. [PMID: 36906304 DOI: 10.1016/j.fm.2023.104233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
Contaminated food contact surface is one of the most important transmission routes for foodborne pathogens. Stainless steel is one such food-contact surface that is widely used in food-processing environments. The present study aimed to evaluate the synergistic antimicrobial efficacy of a combination of tap water-based neutral electrolyzed water (TNEW) and lactic acid (LA) against the foodborne pathogens Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on stainless steel. The results revealed that simultaneous treatment with TNEW (ACC of 4.60 mg/L) and 0.1% LA (TNEW-LA) for 5 min resulted in 4.99-, 4.34-, and >5.4- log CFU/cm2 reductions in E. coli O157:H7, S. Typhimurium, and L. monocytogenes on stainless steel, respectively. Of these, 4.00-, 3.57-, and >4.76-log CFU/cm2 reductions in E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively were exclusively attributed to the synergistic action of the combined treatments after factoring out the reductions due to individual treatments. Furthermore, five mechanistic investigations revealed that the key mechanisms underlying the synergistic antibacterial effect of TNEW-LA were reactive oxygen species (ROS) production, cell membrane damage resulting from membrane lipid oxidation, DNA damage, and inactivation of intracellular enzymes. Overall, our findings suggest that the TNEW-LA combination treatment could be effectively used in the sanitization of food processing environments, especially the food contact surfaces, to control major pathogens and enhance food safety.
Collapse
|
6
|
|
7
|
Rodríguez-López P, Rodríguez-Herrera JJ, López Cabo M. Architectural Features and Resistance to Food-Grade Disinfectants in Listeria monocytogenes- Pseudomonas spp. Dual-Species Biofilms. Front Microbiol 2022; 13:917964. [PMID: 35756028 PMCID: PMC9218357 DOI: 10.3389/fmicb.2022.917964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is considered a foodborne pathogen of serious concern capable of forming multispecies biofilms with other bacterial species, such as Pseudomonas spp., adhered onto stainless steel (SS) surfaces. In an attempt to link the biofilms' morphology and resistance to biocides, dual-species biofilms of L. monocytogenes, in co-culture with either Pseudomonas aeruginosa, Pseudomonas fluorescens, or Pseudomonas putida, were assayed to ascertain their morphological characteristics and resistance toward benzalkonium chloride (BAC) and neutral electrolyzed water (NEW). Epifluorescence microscopy analysis revealed that each dual-species biofilm was distributed differently over the SS surface and that these differences were attributable to the presence of Pseudomonas spp. Confocal laser scanning microscopy (CLSM) assays demonstrated that despite these differences in distribution, all biofilms had similar maximum thicknesses. Along with this, colocalization analyses showed a strong trend of L. monocytogenes to share location within the biofilm with all Pseudomonas assayed whilst the latter distributed throughout the surface independently of the presence of L. monocytogenes, a fact that was especially evident in those biofilms in which cell clusters were present. Finally, a modified Gompertz equation was used to fit biofilms' BAC and NEW dose-response data. Outcomes demonstrated that L. monocytogenes was less susceptible to BAC when co-cultured with P. aeruginosa or P. fluorescens, whereas susceptibility to NEW was reduced in all three dual-species biofilms, which can be attributable to both the mechanism of action of the biocide and the architectural features of each biofilm. Therefore, the results herein provided can be used to optimize already existing and develop novel target-specific sanitation treatments based on the mechanism of action of the biocide and the biofilms' species composition and structure.
Collapse
Affiliation(s)
- Pedro Rodríguez-López
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigacións Mariñas (IIM-CSIC), Vigo, Spain
| | | | | |
Collapse
|
8
|
Moraru PI, Rusu T, Mintas OS. Trial Protocol for Evaluating Platforms for Growing Microgreens in Hydroponic Conditions. Foods 2022; 11:foods11091327. [PMID: 35564050 PMCID: PMC9103178 DOI: 10.3390/foods11091327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/05/2022] Open
Abstract
The hydroponic production of microgreens has potential to develop, at both an industrial, and a family level, due to the improved production platforms. The literature review found numerous studies which recommend procedures, parameters and best intervals for the development of microgreens. This paper aims to develop, based on the review of the literature, a set of procedures and parameters, included in a test protocol, for hydroponically cultivated microgreens. Procedures and parameters proposed to be included in the trial protocol for evaluating platforms for growing microgreens in hydroponic conditions are: (1) different determinations: in controlled settings (setting the optimal ranges) and in operational environments settings (weather conditions in the area/testing period); (2) procedures and parameters related to microgreen growth (obtaining the microgreens seedling, determining microgreen germination, measurements on the morphology of plants, microgreens harvesting); (3) microgreens production and quality (fresh biomass yield, dry matter content, water use efficiency, bioactive compound analysis, statistical analysis). Procedures and parameters proposed in the protocol will provide us with the evaluation information of the hydroponic platforms to ensure: number of growing days to reach desired size; yield per area, crop health, and secondary metabolite accumulation.
Collapse
Affiliation(s)
- Paula Ioana Moraru
- Department of Technical and Soil Sciences, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Teodor Rusu
- Department of Technical and Soil Sciences, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
- Correspondence:
| | | |
Collapse
|