1
|
Azizov V, Hübner M, Frech M, Hofmann J, Kubankova M, Lapuente D, Tenbusch M, Guck J, Schett G, Zaiss MM. Alcohol-sourced acetate impairs T cell function by promoting cortactin acetylation. iScience 2023; 26:107230. [PMID: 37485352 PMCID: PMC10362326 DOI: 10.1016/j.isci.2023.107230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/28/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Alcohol is among the most widely consumed dietary substances. Excessive alcohol consumption damages the liver, heart, and brain. Alcohol also has strong immunoregulatory properties. Here, we report how alcohol impairs T cell function via acetylation of cortactin, a protein that binds filamentous actin and facilitates branching. Upon alcohol consumption, acetate, the metabolite of alcohol, accumulates in lymphoid organs. T cells exposed to acetate, exhibit increased acetylation of cortactin. Acetylation of cortactin inhibits filamentous actin binding and hence reduces T cell migration, immune synapse formation and activation. While mutated, acetylation-resistant cortactin rescues the acetate-induced inhibition of T cell migration, primary mouse cortactin knockout T cells exhibited impaired migration. Acetate-induced cytoskeletal changes effectively inhibited activation, proliferation, and immune synapse formation in T cells in vitro and in vivo in an influenza infection model in mice. Together these findings reveal cortactin as a possible target for mitigation of T cell driven autoimmune diseases.
Collapse
Affiliation(s)
- Vugar Azizov
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michel Hübner
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Frech
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jörg Hofmann
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Marketa Kubankova
- Max Planck Institute for the Science of Light & Max Planck Zentrum für Physik und Medizin, Erlangen, Germany
| | - Dennis Lapuente
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max Planck Zentrum für Physik und Medizin, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mario M. Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
2
|
Lekakarn H, Bunterngsook B, Jaikaew P, Kuantum T, Wansuksri R, Champreda V. Functional Characterization of Recombinant Endo-Levanase (LevBk) from Bacillus koreensis HL12 on Short-Chain Levan-Type Fructooligosaccharides Production. Protein J 2022; 41:477-488. [PMID: 35931938 DOI: 10.1007/s10930-022-10069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 10/15/2022]
Abstract
Levan-type fructooligosaccharides (L-FOSs) are a prominent class of non-digestible oligosaccharides with potential as nutritional prebiotics. Endo-levanase, which randomly hydrolyzes β-(2,6)-linkages in fructans, is a promising enzyme for short-chain FOS production. In this work, a recombinant levanase (LevBk) from Bacillus koreensis strain HL12 was characterized. Soluble LevBk protein was produced in Escherichia coli BL21(DE3) system at 40 mg/L of culture medium. Based on sequence and structural analysis, LevBk was classified as a member of endo-levanase in GH32 family containing N-terminal substrate binding pocket and C-terminal β-sandwich domains. LevBk optimally worked at 45 °C, pH 6.0 with the specific activity of 2.43 U/mg. Based on enzymatic hydrolysis, short-chain L-FOSs with degree of polymerization (DP) of 2-4 were produced from hydrolysis of timothy grass levan under optimal conditions for 9-24 h. With its ability to produce L-FOSs with specific chain lengths, LevBk could be attractively applied for converting of levan containing material to high value-added sweetener in the biorefinery industry.
Collapse
Affiliation(s)
- Hataikarn Lekakarn
- Department of Biotechnology, Faculty of Science and Technology, Rangsit Campus, Thammasat University, Pathum Thani, 12120, Thailand
| | - Benjarat Bunterngsook
- Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani, 12120, Thailand.
| | - Phuphiphat Jaikaew
- Department of Biotechnology, Faculty of Science and Technology, Rangsit Campus, Thammasat University, Pathum Thani, 12120, Thailand
| | - Thanyanun Kuantum
- Department of Biotechnology, Faculty of Science and Technology, Rangsit Campus, Thammasat University, Pathum Thani, 12120, Thailand
| | - Rungtiva Wansuksri
- Cassava and Starch Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, Bangkok, 10900, Thailand
| | - Verawat Champreda
- Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani, 12120, Thailand
| |
Collapse
|
3
|
Ní Dhufaigh K, Botwright N, Dillon E, O’Connor I, MacCarthy E, Slattery O. Differential Exoproteome and Biochemical Characterisation of Neoparamoeba perurans. Microorganisms 2021; 9:microorganisms9061258. [PMID: 34207776 PMCID: PMC8226569 DOI: 10.3390/microorganisms9061258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022] Open
Abstract
Infection with the protozoan ectoparasite Neoparamoeba perurans, the causative agent of AGD, remains a global threat to salmonid farming. This study aimed to analyse the exoproteome of both an attenuated and virulent N. perurans isolate using proteomics and cytotoxicity testing. A disproportionate presence of proteins from the co-cultured microbiota of N. perurans was revealed on searching an amalgamated database of bacterial, N. perurans and Amoebozoa proteins. LC-MS/MS identified 33 differentially expressed proteins, the majority of which were upregulated in the attenuated exoproteome. Proteins of putative interest found in both exoproteomes were maltoporin, ferrichrome-iron receptor, and putative ferric enterobactin receptor. Protease activity remained significantly elevated in the attenuated exoproteome compared with the virulent exoproteome. Similarly, the attenuated exoproteome had a significantly higher cytotoxic effect on rainbow trout gill cell line (RTgill W1) cells compared with the virulent exoproteome. The presence of a phosphatase and serine protease in the virulent exoproteome may facilitate AGD infection but do not appear to be key players in causing cytotoxicity. Altogether, this study reveals prolonged culture of N. perurans affects the exoproteome composition in favour of nutritional acquisition, and that the current culturing protocol for virulent N. perurans does not facilitate the secretion of virulence factors.
Collapse
Affiliation(s)
- Kerrie Ní Dhufaigh
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Co. Galway, H91 T8NW Eircode, Ireland; (I.O.); (E.M.)
- Correspondence:
| | - Natasha Botwright
- CSIRO Agriculture and Food, Livestock & Aquaculture, Queensland Biosciences Precinct, 306 Carmody Road, Brisbane, QLD 4067, Australia;
| | - Eugene Dillon
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Co. Dublin, D04 V1W8 Eircode, Ireland;
| | - Ian O’Connor
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Co. Galway, H91 T8NW Eircode, Ireland; (I.O.); (E.M.)
| | - Eugene MacCarthy
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Co. Galway, H91 T8NW Eircode, Ireland; (I.O.); (E.M.)
| | - Orla Slattery
- Department of Biopharmaceutical and Medical Science, Galway-Mayo Institute of Technology, Co. Galway, H91 T8NW Eircode, Ireland;
| |
Collapse
|
4
|
Soliman A, Rampitsch C, Tambong JT, Daayf F. Secretome Analysis of Clavibacter nebraskensis Strains Treated with Natural Xylem Sap In Vitro Predicts Involvement of Glycosyl Hydrolases and Proteases in Bacterial Aggressiveness. Proteomes 2021; 9:1. [PMID: 33435483 PMCID: PMC7839047 DOI: 10.3390/proteomes9010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 11/16/2022] Open
Abstract
The Gram-positive bacterium Clavibacter nebraskensis (Cn) causes Goss's wilt and leaf blight on corn in the North American Central Plains with yield losses as high as 30%. Cn strains vary in aggressiveness on corn, with highly aggressive strains causing much more serious symptoms and damage to crops. Since Cn inhabits the host xylem, we investigated differences in the secreted proteomes of Cn strains to determine whether these could account for phenotypic differences in aggressiveness. Highly and a weakly aggressive Cn strains (Cn14-15-1 and DOAB232, respectively) were cultured, in vitro, in the xylem sap of corn (CXS; host) and tomato (TXS; non-host). The secretome of the Cn strains were extracted and processed, and a comparative bottom-up proteomics approach with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine their identities and concentration. Relative quantitation of peptides was based on precursor ion intensities to measure protein abundances. In total, 745 proteins were identified in xylem sap media. In CXS, a total of 658 and 396 proteins were identified in strains Cn14-5-1 and DOAB232, respectively. The unique and the differentially abundant proteins in the secretome of strain Cn14-5-1 were higher in either sap medium compared to DOAB232. These proteins were sorted using BLAST2GO and assigned to 12 cellular functional processes. Virulence factors, e.g., cellulase, β-glucosidase, β-galactosidase, chitinase, β-1,4-xylanase, and proteases were generally higher in abundance in the aggressive Cn isolate. This was corroborated by enzymatic activity assays of cellulase and protease in CXS. These proteins were either not detected or detected at significantly lower abundance levels in Cn strains grown in non-host xylem sap (tomato), suggesting potential factors involved in Cn-host (corn) interactions.
Collapse
Affiliation(s)
- Atta Soliman
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Department of Genetics, Faculty of Agriculture, University of Tanta, Tanta, Gharbiya 31111, Egypt
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Christof Rampitsch
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada;
| | | | - Fouad Daayf
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
5
|
Möller J, Schorlemmer S, Hofmann J, Burkovski A. Cellular and Extracellular Proteome of the Animal Pathogen Corynebacterium silvaticum, a Close Relative of Zoonotic Corynebacterium ulcerans and Corynebacterium pseudotuberculosis. Proteomes 2020; 8:proteomes8030019. [PMID: 32806579 PMCID: PMC7564913 DOI: 10.3390/proteomes8030019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 01/22/2023] Open
Abstract
Corynebacterium silvaticum is a newly described animal pathogen, closely related to the emerging human pathogen Corynebacterium ulcerans and Corynebacterium pseudotuberculosis, a major pathogen of small ruminants. In this study, proteins of a whole cell and a shaving fraction and the exoproteome of C. silvaticum strain W25 were analyzed as a first proteome study of this species. In total, 1305 proteins were identified out of 2013 proteins encoded by the W25 genome sequence and number of putative virulence factors were detected already under standard growth conditions including phospholipase D and sialidase. An up to now uncharacterized trypsin-like protease is by far the most secreted protein in this species, indicating a putative role in pathogenicity. Furthermore, the proteome analyses carried out in this study support the recently published taxonomical delineation of C. silvaticum from the closely related zoonotic Corynebacterium species.
Collapse
Affiliation(s)
- Jens Möller
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany; (J.M.); (S.S.)
| | - Svenja Schorlemmer
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany; (J.M.); (S.S.)
| | - Jörg Hofmann
- Biochemistry Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany;
| | - Andreas Burkovski
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany; (J.M.); (S.S.)
- Correspondence: ; Tel.: +49-9131-85-28086
| |
Collapse
|
6
|
Peritore-Galve FC, Schneider DJ, Yang Y, Thannhauser TW, Smart CD, Stodghill P. Proteome Profile and Genome Refinement of the Tomato-Pathogenic Bacterium Clavibacter michiganensis subsp. michiganensis. Proteomics 2019; 19:e1800224. [PMID: 30648817 DOI: 10.1002/pmic.201800224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/29/2018] [Indexed: 11/07/2022]
Affiliation(s)
- F Christopher Peritore-Galve
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY, 14456, USA
| | - David J Schneider
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4J8, Canada
| | - Yong Yang
- United States Department of Agriculture (USDA), Agricultural Research Service, Robert W. Holley Center, Ithaca, NY, 14853, USA
| | - Theodore W Thannhauser
- United States Department of Agriculture (USDA), Agricultural Research Service, Robert W. Holley Center, Ithaca, NY, 14853, USA
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY, 14456, USA
| | - Paul Stodghill
- United States Department of Agriculture (USDA), Agricultural Research Service, Robert W. Holley Center, Ithaca, NY, 14853, USA
| |
Collapse
|
7
|
Surface and Extracellular Proteome of the Emerging Pathogen Corynebacterium ulcerans. Proteomes 2018; 6:proteomes6020018. [PMID: 29673200 PMCID: PMC6027474 DOI: 10.3390/proteomes6020018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Corynebacterium ulcerans is an emerging pathogen, which is increasingly recognized as an etiological agent of diphtheria, but can also evoke ulcers of the skin and systemic infections in humans. Besides man, the bacteria can colonize a wide variety of different animals, including cattle and pet animals, which might serve as a reservoir for human infections. In this study, surface-located proteins and the exoproteome of two Corynebacterium ulcerans strains were analyzed, since these may have key roles in the interaction of the pathogen with host cells. Strain 809 was isolated from a fatal case of human respiratory tract infection, while strain BR-AD22 was isolated from a nasal swap of an asymptomatic dog. While a very similar pattern of virulence factors was observed in the culture supernatant and surface protein fractions of the two strains, proteome analyses revealed a higher stability of 809 cells compared to strain BR-AD22. During exponential growth, 17% of encoded proteins of strain 809 were detectable in the medium, while 38% of the predicted proteins encoded by the BR-AD22 chromosome were found. Furthermore, the data indicate differential expression of phospholipase D and a cell wall-associated hydrolase, since these were only detected in strain BR-AD22.
Collapse
|
8
|
Heilingloh CS, Klingl S, Egerer-Sieber C, Schmid B, Weiler S, Mühl-Zürbes P, Hofmann J, Stump JD, Sticht H, Kummer M, Steinkasserer A, Muller YA. Crystal Structure of the Extracellular Domain of the Human Dendritic Cell Surface Marker CD83. J Mol Biol 2017; 429:1227-1243. [PMID: 28315353 DOI: 10.1016/j.jmb.2017.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/10/2017] [Accepted: 03/05/2017] [Indexed: 11/27/2022]
Abstract
CD83 is a type-I membrane protein and an efficient marker for identifying mature dendritic cells. Whereas membrane-bound, full-length CD83 co-stimulates the immune system, a soluble variant (sCD83), consisting of the extracellular domain only, displays strong immune-suppressive activities. Besides a prediction that sCD83 adopts a V-set Ig-like fold, however, little is known about the molecular architecture of CD83 and the mechanism by which CD83 exerts its function on dendritic cells and additional immune cells. Here, we report the crystal structure of human sCD83 up to a resolution of 1.7Å solved in three different crystal forms. Interestingly, β-strands C', C″, and D that are typical for V-set Ig-domains could not be traced in sCD83. Mass spectrometry analyses, limited proteolysis experiments, and bioinformatics studies show that the corresponding segment displays enhanced main-chain accessibility, extraordinary low sequence conservation, and a predicted high disorder propensity. Chimeric proteins with amino acid swaps in this segment show unaltered immune-suppressive activities in a TNF-α assay when compared to wild-type sCD83. This strongly indicates that this segment does not participate in the biological activity of CD83. The crystal structure of CD83 shows the recurrent formation of dimers and trimers in the various crystal forms and reveals strong structural similarities between sCD83 and B7 family members and CD48, a signaling lymphocyte activation molecule family member. This suggests that CD83 exerts its immunological activity by mixed homotypic and heterotypic interactions as typically observed for proteins present in the immunological synapse.
Collapse
Affiliation(s)
- Christiane S Heilingloh
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Hartmannstr. 14, D-91052 Erlangen, Germany
| | - Stefan Klingl
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Henkestr. 91, D-91052 Erlangen, Germany
| | - Claudia Egerer-Sieber
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Henkestr. 91, D-91052 Erlangen, Germany
| | - Benedikt Schmid
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Henkestr. 91, D-91052 Erlangen, Germany
| | - Sigrid Weiler
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Henkestr. 91, D-91052 Erlangen, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Hartmannstr. 14, D-91052 Erlangen, Germany
| | - Jörg Hofmann
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Joachim D Stump
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstraße 17, D-91054 Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstraße 17, D-91054 Erlangen, Germany
| | - Mirko Kummer
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Hartmannstr. 14, D-91052 Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Hartmannstr. 14, D-91052 Erlangen, Germany
| | - Yves A Muller
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Henkestr. 91, D-91052 Erlangen, Germany.
| |
Collapse
|