1
|
Coorssen JR, Padula MP. Proteomics-The State of the Field: The Definition and Analysis of Proteomes Should Be Based in Reality, Not Convenience. Proteomes 2024; 12:14. [PMID: 38651373 PMCID: PMC11036260 DOI: 10.3390/proteomes12020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
With growing recognition and acknowledgement of the genuine complexity of proteomes, we are finally entering the post-proteogenomic era. Routine assessment of proteomes as inferred correlates of gene sequences (i.e., canonical 'proteins') cannot provide the necessary critical analysis of systems-level biology that is needed to understand underlying molecular mechanisms and pathways or identify the most selective biomarkers and therapeutic targets. These critical requirements demand the analysis of proteomes at the level of proteoforms/protein species, the actual active molecular players. Currently, only highly refined integrated or integrative top-down proteomics (iTDP) enables the analytical depth necessary to provide routine, comprehensive, and quantitative proteome assessments across the widest range of proteoforms inherent to native systems. Here we provide a broad perspective of the field, taking in historical and current realities, to establish a more balanced understanding of where the field has come from (in particular during the ten years since Proteomes was launched), current issues, and how things likely need to proceed if necessary deep proteome analyses are to succeed. We base this in our firm belief that the best proteomic analyses reflect, as closely as possible, the native sample at the moment of sampling. We also seek to emphasise that this and future analytical approaches are likely best based on the broad recognition and exploitation of the complementarity of currently successful approaches. This also emphasises the need to continuously evaluate and further optimize established approaches, to avoid complacency in thinking and expectations but also to promote the critical and careful development and introduction of new approaches, most notably those that address proteoforms. Above all, we wish to emphasise that a rigorous focus on analytical quality must override current thinking that largely values analytical speed; the latter would certainly be nice, if only proteoforms could thus be effectively, routinely, and quantitatively assessed. Alas, proteomes are composed of proteoforms, not molecular species that can be amplified or that directly mirror genes (i.e., 'canonical'). The problem is hard, and we must accept and address it as such, but the payoff in playing this longer game of rigorous deep proteome analyses is the promise of far more selective biomarkers, drug targets, and truly personalised or even individualised medicine.
Collapse
Affiliation(s)
- Jens R. Coorssen
- Department of Biological Sciences, Faculty of Mathematics and Science, Brock University, St. Catharines, ON L2S 3A1, Canada
- Institute for Globally Distributed Open Research and Education (IGDORE), St. Catharines, ON L2N 4X2, Canada
| | - Matthew P. Padula
- School of Life Sciences and Proteomics, Lipidomics and Metabolomics Core Facility, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
2
|
Ujcikova H, Lee YS, Roubalova L, Svoboda P. The impact of multifunctional enkephalin analogs and morphine on the protein changes in crude membrane fractions isolated from the rat brain cortex and hippocampus. Peptides 2024; 174:171165. [PMID: 38307418 DOI: 10.1016/j.peptides.2024.171165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Endogenous opioid peptides serve as potent analgesics through the opioid receptor (OR) activation. However, they often suffer from poor metabolic stability, low lipophilicity, and low blood-brain barrier permeability. Researchers have developed many strategies to overcome the drawbacks of current pain medications and unwanted biological effects produced by the interaction with opioid receptors. Here, we tested multifunctional enkephalin analogs LYS739 (MOR/DOR agonist and KOR partial antagonist) and LYS744 (MOR/DOR agonist and KOR full antagonist) under in vivo conditions in comparison with MOR agonist, morphine. We applied 2D electrophoretic resolution to investigate differences in proteome profiles of crude membrane (CM) fractions isolated from the rat brain cortex and hippocampus exposed to the drugs (10 mg/kg, seven days). Our results have shown that treatment with analog LYS739 induced the most protein changes in cortical and hippocampal samples. The identified proteins were mainly associated with energy metabolism, cell shape and movement, apoptosis, protein folding, regulation of redox homeostasis, and signal transduction. Among these, the isoform of mitochondrial ATP synthase subunit beta (ATP5F1B) was the only protein upregulation in the hippocampus but not in the brain cortex. Contrarily, the administration of analog LYS744 caused a small number of protein alterations in both brain parts. Our results indicate that the KOR full antagonism, together with MOR/DOR agonism of multifunctional opioid ligands, can be beneficial in treating chronic pain states by reducing changes in protein expression levels but retaining analgesic efficacy.
Collapse
Affiliation(s)
- Hana Ujcikova
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic.
| | - Yeon Sun Lee
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | - Lenka Roubalova
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Petr Svoboda
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| |
Collapse
|
3
|
Arinrad S, Depp C, Siems SB, Sasmita AO, Eichel MA, Ronnenberg A, Hammerschmidt K, Lüders KA, Werner HB, Ehrenreich H, Nave KA. Isolated catatonia-like executive dysfunction in mice with forebrain-specific loss of myelin integrity. eLife 2023; 12:70792. [PMID: 36892455 PMCID: PMC9998085 DOI: 10.7554/elife.70792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 01/24/2023] [Indexed: 03/10/2023] Open
Abstract
A key feature of advanced brain aging includes structural defects of intracortical myelin that are associated with secondary neuroinflammation. A similar pathology is seen in specific myelin mutant mice that model 'advanced brain aging' and exhibit a range of behavioral abnormalities. However, the cognitive assessment of these mutants is problematic because myelin-dependent motor-sensory functions are required for quantitative behavioral readouts. To better understand the role of cortical myelin integrity for higher brain functions, we generated mice lacking Plp1, encoding the major integral myelin membrane protein, selectively in ventricular zone stem cells of the mouse forebrain. In contrast to conventional Plp1 null mutants, subtle myelin defects were restricted to the cortex, hippocampus, and underlying callosal tracts. Moreover, forebrain-specific Plp1 mutants exhibited no defects of basic motor-sensory performance at any age tested. Surprisingly, several behavioral alterations reported for conventional Plp1 null mice (Gould et al., 2018) were absent and even social interactions appeared normal. However, with novel behavioral paradigms, we determined catatonia-like symptoms and isolated executive dysfunction in both genders. This suggests that loss of myelin integrity has an impact on cortical connectivity and underlies specific defects of executive function. These observations are likewise relevant for human neuropsychiatric conditions and other myelin-related diseases.
Collapse
Affiliation(s)
- Sahab Arinrad
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Constanze Depp
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sophie B Siems
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Maria A Eichel
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Anja Ronnenberg
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Katja A Lüders
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hauke B Werner
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Klaus-Armin Nave
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
4
|
Woodland B, Necakov A, Coorssen JR. Optimized Proteome Reduction for Integrative Top–Down Proteomics. Proteomes 2023; 11:proteomes11010010. [PMID: 36976889 PMCID: PMC10059017 DOI: 10.3390/proteomes11010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Integrative top–down proteomics is an analytical approach that fully addresses the breadth and complexity needed for effective and routine assessment of proteomes. Nonetheless, any such assessments also require a rigorous review of methodology to ensure the deepest possible quantitative proteome analyses. Here, we establish an optimized general protocol for proteome extracts to improve the reduction of proteoforms and, thus, resolution in 2DE. Dithiothreitol (DTT), tributylphosphine (TBP), and 2-hydroxyethyldisulfide (HED), combined and alone, were tested in one-dimensional SDS-PAGE (1DE), prior to implementation into a full 2DE protocol. Prior to sample rehydration, reduction with 100 mM DTT + 5 mM TBP yielded increased spot counts, total signal, and spot circularity (i.e., decreased streaking) compared to other conditions and reduction protocols reported in the literature. The data indicate that many widely implemented reduction protocols are significantly ‘under-powered’ in terms of proteoform reduction and thus, limit the quality and depth of routine top–down proteomic analyses.
Collapse
Affiliation(s)
- Breyer Woodland
- Department of Biological Sciences, Faculty of Mathematics and Science, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Aleksandar Necakov
- Department of Biological Sciences, Faculty of Mathematics and Science, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Jens R. Coorssen
- Department of Biological Sciences, Faculty of Mathematics and Science, Brock University, St. Catharines, ON L2S 3A1, Canada
- Ronin Institute, Montclair, NJ 07043, USA
- Correspondence:
| |
Collapse
|
5
|
Meschkat M, Steyer AM, Weil MT, Kusch K, Jahn O, Piepkorn L, Agüi-Gonzalez P, Phan NTN, Ruhwedel T, Sadowski B, Rizzoli SO, Werner HB, Ehrenreich H, Nave KA, Möbius W. White matter integrity in mice requires continuous myelin synthesis at the inner tongue. Nat Commun 2022; 13:1163. [PMID: 35246535 PMCID: PMC8897471 DOI: 10.1038/s41467-022-28720-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/24/2022] [Indexed: 12/18/2022] Open
Abstract
Myelin, the electrically insulating sheath on axons, undergoes dynamic changes over time. However, it is composed of proteins with long lifetimes. This raises the question how such a stable structure is renewed. Here, we study the integrity of myelinated tracts after experimentally preventing the formation of new myelin in the CNS of adult mice, using an inducible Mbp null allele. Oligodendrocytes survive recombination, continue to express myelin genes, but they fail to maintain compacted myelin sheaths. Using 3D electron microscopy and mass spectrometry imaging we visualize myelin-like membranes failing to incorporate adaxonally, most prominently at juxta-paranodes. Myelinoid body formation indicates degradation of existing myelin at the abaxonal side and the inner tongue of the sheath. Thinning of compact myelin and shortening of internodes result in the loss of about 50% of myelin and axonal pathology within 20 weeks post recombination. In summary, our data suggest that functional axon-myelin units require the continuous incorporation of new myelin membranes. Myelin is formed of proteins of long half-lives. The mechanisms of renewal of such a stable structure are unclear. Here, the authors show that myelin integrity requires continuous myelin synthesis at the inner tongue, contributing to the maintenance of a functional axon-myelin unit.
Collapse
Affiliation(s)
- Martin Meschkat
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Göttingen Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences (GGNB), Göttingen, Germany.,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Abberior Instruments GmbH, Göttingen, Germany
| | - Anna M Steyer
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Imaging Centre, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Marie-Theres Weil
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Olaf Jahn
- DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Lars Piepkorn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Paola Agüi-Gonzalez
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Nhu Thi Ngoc Phan
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Boguslawa Sadowski
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Silvio O Rizzoli
- DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Hannelore Ehrenreich
- DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany. .,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany. .,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany. .,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
6
|
Macheleidt J, Kniemeyer O. Serological Proteome Analysis for the Characterization of Secreted Fungal Protein Antigens. Methods Mol Biol 2021; 2260:15-26. [PMID: 33405028 DOI: 10.1007/978-1-0716-1182-1_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Defining the humoral immune response to infectious agents is important for gaining insights into infectious diseases and the response of the immune system. It can further aid development of serodiagnostic tests, discovery of vaccine antigen candidates, and immuno-epidemiological research. During the last three decades, serological proteome analyses (SERPAs) have played a significant role in characterizing the antibody response of humans or animals to fungal pathogens. SERPA combines 2D-gel electrophoresis with Western blotting. The introduction of multiplexing approaches by means of fluorescent dyes has greatly improved the reliability of the 2D technique and has boosted also the qualitative capabilities of the SERPA approach. In this chapter, we detail a SERPA protocol using fungal extracellular proteins from a fungal culture, here as an example the mold Aspergillus fumigatus.
Collapse
Affiliation(s)
- Juliane Macheleidt
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Olaf Kniemeyer
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany.
| |
Collapse
|
7
|
Marcus K, Lelong C, Rabilloud T. What Room for Two-Dimensional Gel-Based Proteomics in a Shotgun Proteomics World? Proteomes 2020; 8:proteomes8030017. [PMID: 32781532 PMCID: PMC7563651 DOI: 10.3390/proteomes8030017] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Two-dimensional gel electrophoresis was instrumental in the birth of proteomics in the late 1980s. However, it is now often considered as an outdated technique for proteomics—a thing of the past. Although this opinion may be true for some biological questions, e.g., when analysis depth is of critical importance, for many others, two-dimensional gel electrophoresis-based proteomics still has a lot to offer. This is because of its robustness, its ability to separate proteoforms, and its easy interface with many powerful biochemistry techniques (including western blotting). This paper reviews where and why two-dimensional gel electrophoresis-based proteomics can still be profitably used. It emerges that, rather than being a thing of the past, two-dimensional gel electrophoresis-based proteomics is still highly valuable for many studies. Thus, its use cannot be dismissed on simple fashion arguments and, as usual, in science, the tree is to be judged by the fruit.
Collapse
Affiliation(s)
- Katrin Marcus
- Medizinisches Proteom-Center, Medical Faculty & Medical Proteome Analysis, Center for Proteindiagnostics (PRODI) Ruhr-University Bochum Gesundheitscampus, 4 44801 Bochum, Germany;
| | - Cécile Lelong
- CBM UMR CNRS5249, Université Grenoble Alpes, CEA, CNRS, 17 rue des Martyrs, CEDEX 9, 38054 Grenoble, France;
| | - Thierry Rabilloud
- Laboratory of Chemistry and Biology of Metals, UMR 5249, Université Grenoble Alpes, CNRS, 38054 Grenoble, France
- Correspondence: ; Tel.: +33-438-783-212
| |
Collapse
|
8
|
Iveland TS, Hagen L, Sharma A, Sousa MML, Sarno A, Wollen KL, Liabakk NB, Slupphaug G. HDACi mediate UNG2 depletion, dysregulated genomic uracil and altered expression of oncoproteins and tumor suppressors in B- and T-cell lines. J Transl Med 2020; 18:159. [PMID: 32264925 PMCID: PMC7137348 DOI: 10.1186/s12967-020-02318-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND HDAC inhibitors (HDACi) belong to a new group of chemotherapeutics that are increasingly used in the treatment of lymphocyte-derived malignancies, but their mechanisms of action remain poorly understood. Here we aimed to identify novel protein targets of HDACi in B- and T-lymphoma cell lines and to verify selected candidates across several mammalian cell lines. METHODS Jurkat T- and SUDHL5 B-lymphocytes were treated with the HDACi SAHA (vorinostat) prior to SILAC-based quantitative proteome analysis. Selected differentially expressed proteins were verified by targeted mass spectrometry, RT-PCR and western analysis in multiple mammalian cell lines. Genomic uracil was quantified by LC-MS/MS, cell cycle distribution analyzed by flow cytometry and class switch recombination monitored by FACS in murine CH12F3 cells. RESULTS SAHA treatment resulted in differential expression of 125 and 89 proteins in Jurkat and SUDHL5, respectively, of which 19 were commonly affected. Among these were several oncoproteins and tumor suppressors previously not reported to be affected by HDACi. Several key enzymes determining the cellular dUTP/dTTP ratio were downregulated and in both cell lines we found robust depletion of UNG2, the major glycosylase in genomic uracil sanitation. UNG2 depletion was accompanied by hyperacetylation and mediated by increased proteasomal degradation independent of cell cycle stage. UNG2 degradation appeared to be ubiquitous and was observed across several mammalian cell lines of different origin and with several HDACis. Loss of UNG2 was accompanied by 30-40% increase in genomic uracil in freely cycling HEK cells and reduced immunoglobulin class-switch recombination in murine CH12F3 cells. CONCLUSION We describe several oncoproteins and tumor suppressors previously not reported to be affected by HDACi in previous transcriptome analyses, underscoring the importance of proteome analysis to identify cellular effectors of HDACi treatment. The apparently ubiquitous depletion of UNG2 and PCLAF establishes DNA base excision repair and translesion synthesis as novel pathways affected by HDACi treatment. Dysregulated genomic uracil homeostasis may aid interpretation of HDACi effects in cancer cells and further advance studies on this class of inhibitors in the treatment of APOBEC-expressing tumors, autoimmune disease and HIV-1.
Collapse
Affiliation(s)
- Tobias S Iveland
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Cancer Clinic, St. Olav's Hospital, Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway.,Proteomics and Modomics Experimental Core, PROMEC, at NTNU and the Central Norway Regional Health Authority, Stjørdal, Norway
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway.,Proteomics and Modomics Experimental Core, PROMEC, at NTNU and the Central Norway Regional Health Authority, Stjørdal, Norway
| | - Mirta M L Sousa
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway
| | - Antonio Sarno
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway
| | - Kristian Lied Wollen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Nina Beate Liabakk
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway. .,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway. .,Proteomics and Modomics Experimental Core, PROMEC, at NTNU and the Central Norway Regional Health Authority, Stjørdal, Norway.
| |
Collapse
|
9
|
Siems SB, Jahn O, Eichel MA, Kannaiyan N, Wu LMN, Sherman DL, Kusch K, Hesse D, Jung RB, Fledrich R, Sereda MW, Rossner MJ, Brophy PJ, Werner HB. Proteome profile of peripheral myelin in healthy mice and in a neuropathy model. eLife 2020; 9:e51406. [PMID: 32130108 PMCID: PMC7056269 DOI: 10.7554/elife.51406] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Proteome and transcriptome analyses aim at comprehending the molecular profiles of the brain, its cell-types and subcellular compartments including myelin. Despite the relevance of the peripheral nervous system for normal sensory and motor capabilities, analogous approaches to peripheral nerves and peripheral myelin have fallen behind evolving technical standards. Here we assess the peripheral myelin proteome by gel-free, label-free mass-spectrometry for deep quantitative coverage. Integration with RNA-Sequencing-based developmental mRNA-abundance profiles and neuropathy disease genes illustrates the utility of this resource. Notably, the periaxin-deficient mouse model of the neuropathy Charcot-Marie-Tooth 4F displays a highly pathological myelin proteome profile, exemplified by the discovery of reduced levels of the monocarboxylate transporter MCT1/SLC16A1 as a novel facet of the neuropathology. This work provides the most comprehensive proteome resource thus far to approach development, function and pathology of peripheral myelin, and a straightforward, accurate and sensitive workflow to address myelin diversity in health and disease.
Collapse
Affiliation(s)
- Sophie B Siems
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Maria A Eichel
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Nirmal Kannaiyan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU MunichMunichGermany
| | - Lai Man N Wu
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Diane L Sherman
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Dörte Hesse
- Proteomics Group, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Robert Fledrich
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
- Institute of Anatomy, University of LeipzigLeipzigGermany
| | - Michael W Sereda
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
- Department of Clinical Neurophysiology, University Medical CenterGöttingenGermany
| | - Moritz J Rossner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU MunichMunichGermany
| | - Peter J Brophy
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| |
Collapse
|
10
|
Innovating the Concept and Practice of Two-Dimensional Gel Electrophoresis in the Analysis of Proteomes at the Proteoform Level. Proteomes 2019; 7:proteomes7040036. [PMID: 31671630 PMCID: PMC6958347 DOI: 10.3390/proteomes7040036] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/15/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022] Open
Abstract
Two-dimensional gel electrophoresis (2DE) is an important and well-established technical platform enabling extensive top-down proteomic analysis. However, the long-held but now largely outdated conventional concepts of 2DE have clearly impacted its application to in-depth investigations of proteomes at the level of protein species/proteoforms. It is time to popularize a new concept of 2DE for proteomics. With the development and enrichment of the proteome concept, any given “protein” is now recognized to consist of a series of proteoforms. Thus, it is the proteoform, rather than the canonical protein, that is the basic unit of a proteome, and each proteoform has a specific isoelectric point (pI) and relative mass (Mr). Accordingly, using 2DE, each proteoform can routinely be resolved and arrayed according to its different pI and Mr. Each detectable spot contains multiple proteoforms derived from the same gene, as well as from different genes. Proteoforms derived from the same gene are distributed into different spots in a 2DE pattern. High-resolution 2DE is thus actually an initial level of separation to address proteome complexity and is effectively a pre-fractionation method prior to analysis using mass spectrometry (MS). Furthermore, stable isotope-labeled 2DE coupled with high-sensitivity liquid chromatography-tandem MS (LC-MS/MS) has tremendous potential for the large-scale detection, identification, and quantification of the proteoforms that constitute proteomes.
Collapse
|
11
|
Krause RG, Goldring JD. Crystal violet stains proteins in SDS-PAGE gels and zymograms. Anal Biochem 2019; 566:107-115. [DOI: 10.1016/j.ab.2018.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 11/28/2022]
|
12
|
Lüders KA, Nessler S, Kusch K, Patzig J, Jung RB, Möbius W, Nave KA, Werner HB. Maintenance of high proteolipid protein level in adult central nervous system myelin is required to preserve the integrity of myelin and axons. Glia 2019; 67:634-649. [PMID: 30637801 DOI: 10.1002/glia.23549] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022]
Abstract
Proteolipid protein (PLP) is the most abundant integral membrane protein in central nervous system (CNS) myelin. Expression of the Plp-gene in oligodendrocytes is not essential for the biosynthesis of myelin membranes but required to prevent axonal pathology. This raises the question whether the exceptionally high level of PLP in myelin is required later in life, or whether high-level PLP expression becomes dispensable once myelin has been assembled. Both models require a better understanding of the turnover of PLP in myelin in vivo. Thus, we generated and characterized a novel line of tamoxifen-inducible Plp-mutant mice that allowed us to determine the rate of PLP turnover after developmental myelination has been completed, and to assess the possible impact of gradually decreasing amounts of PLP for myelin and axonal integrity. We found that 6 months after targeting the Plp-gene the abundance of PLP in CNS myelin was about halved, probably reflecting that myelin is slowly turned over in the adult brain. Importantly, this reduction by 50% was sufficient to cause the entire spectrum of neuropathological changes previously associated with the developmental lack of PLP, including myelin outfoldings, lamellae splittings, and axonal spheroids. In comparison to axonopathy and gliosis, the infiltration of cytotoxic T-cells was temporally delayed, suggesting a corresponding chronology also in the genetic disorders of PLP-deficiency. High-level abundance of PLP in myelin throughout adult life emerges as a requirement for the preservation of white matter integrity.
Collapse
Affiliation(s)
- Katja A Lüders
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, Göttingen, Germany
| | - Stefan Nessler
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Julia Patzig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
13
|
Inventory of proteoforms as a current challenge of proteomics: Some technical aspects. J Proteomics 2019; 191:22-28. [DOI: 10.1016/j.jprot.2018.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 02/08/2023]
|
14
|
Coorssen J, Yergey A. Editorial for Special Issue: Approaches to Top-Down Proteomics: In Honour of Prof. Patrick H. O'Farrell. Proteomes 2017; 5:proteomes5030018. [PMID: 28737716 PMCID: PMC5620535 DOI: 10.3390/proteomes5030018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- Jens Coorssen
- Faculty of Graduate Studies, and the Departments of Health Sciences and Biological Sciences, Brock University, St. Catharines, L2S 3A1 ON, Canada.
| | - Alfred Yergey
- NIH, Building 10, Room 9D 52, Bethesda, MD 20892, USA.
| |
Collapse
|