1
|
Blednov YA, Da Costa A, Mason S, Mayfield J, Messing RO. Selective PDE4B and PDE4D inhibitors produce distinct behavioral responses to ethanol and GABAergic drugs in mice. Neuropharmacology 2023; 231:109508. [PMID: 36935006 PMCID: PMC10127528 DOI: 10.1016/j.neuropharm.2023.109508] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
Apremilast is a phosphodiesterase (PDE) type 4 inhibitor that is nonselective at subtypes PDE4A-D. It modulates ethanol and GABAergic responses via protein kinase A (PKA) phosphorylation of specific GABAA receptor subunits and has opposite effects on ethanol-induced ataxia in wild-type and GABAA β3-S408/409A knock-in mice. We hypothesized that these different effects are due to preferential actions at different PDE4 subtypes. To test this hypothesis, we compared effects of selective PDE4 inhibitors on responses to ethanol and GABAergic drugs in male and female C57BL/6J mice. The PDE4B inhibitor A33 accelerated recovery from ataxia induced by ethanol and diazepam but did not alter ataxia induced by propofol. The PDE4D inhibitor D159687 accelerated recovery from diazepam-induced ataxia but prolonged recovery from ethanol- and propofol-induced ataxia. A33 shortened, while D159687 prolonged, the sedative-hypnotic effects of ethanol. Both drugs shortened diazepam's sedative-hypnotic effects. The modulatory effects of A33 and D159687 were completely prevented by the PKA inhibitor H89. Only D159687 prevented development of acute functional tolerance to ethanol-induced ataxia. D159687 transiently reduced two-bottle choice drinking in male and female mice that had consumed ethanol for 3 weeks and transiently reduced two-bottle choice, every-other-day drinking in male mice. A33 did not alter ethanol drinking in either procedure. Neither drug altered binge-like ethanol consumption or blood ethanol clearance. Thus, D159687 produced behavioral effects similar to apremilast, although it produced a more transient and smaller reduction in drinking. These results indicate that PDE4D inhibition contributes to apremilast's ability to reduce ethanol drinking, whereas PDE4B inhibition is not involved.
Collapse
Affiliation(s)
- Yuri A Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Adriana Da Costa
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sonia Mason
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jody Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Robert O Messing
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
2
|
Robert SM, Reeves BC, Kiziltug E, Duy PQ, Karimy JK, Mansuri MS, Marlier A, Allington G, Greenberg ABW, DeSpenza T, Singh AK, Zeng X, Mekbib KY, Kundishora AJ, Nelson-Williams C, Hao LT, Zhang J, Lam TT, Wilson R, Butler WE, Diluna ML, Feinberg P, Schafer DP, Movahedi K, Tannenbaum A, Koundal S, Chen X, Benveniste H, Limbrick DD, Schiff SJ, Carter BS, Gunel M, Simard JM, Lifton RP, Alper SL, Delpire E, Kahle KT. The choroid plexus links innate immunity to CSF dysregulation in hydrocephalus. Cell 2023; 186:764-785.e21. [PMID: 36803604 PMCID: PMC10069664 DOI: 10.1016/j.cell.2023.01.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 09/26/2022] [Accepted: 01/12/2023] [Indexed: 02/18/2023]
Abstract
The choroid plexus (ChP) is the blood-cerebrospinal fluid (CSF) barrier and the primary source of CSF. Acquired hydrocephalus, caused by brain infection or hemorrhage, lacks drug treatments due to obscure pathobiology. Our integrated, multi-omic investigation of post-infectious hydrocephalus (PIH) and post-hemorrhagic hydrocephalus (PHH) models revealed that lipopolysaccharide and blood breakdown products trigger highly similar TLR4-dependent immune responses at the ChP-CSF interface. The resulting CSF "cytokine storm", elicited from peripherally derived and border-associated ChP macrophages, causes increased CSF production from ChP epithelial cells via phospho-activation of the TNF-receptor-associated kinase SPAK, which serves as a regulatory scaffold of a multi-ion transporter protein complex. Genetic or pharmacological immunomodulation prevents PIH and PHH by antagonizing SPAK-dependent CSF hypersecretion. These results reveal the ChP as a dynamic, cellularly heterogeneous tissue with highly regulated immune-secretory capacity, expand our understanding of ChP immune-epithelial cell cross talk, and reframe PIH and PHH as related neuroimmune disorders vulnerable to small molecule pharmacotherapy.
Collapse
Affiliation(s)
- Stephanie M Robert
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Benjamin C Reeves
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Emre Kiziltug
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Phan Q Duy
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jason K Karimy
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - M Shahid Mansuri
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Arnaud Marlier
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Garrett Allington
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ana B W Greenberg
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Tyrone DeSpenza
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Amrita K Singh
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xue Zeng
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kedous Y Mekbib
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Adam J Kundishora
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Le Thi Hao
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter EX1 2LU, UK
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA; Keck MS & Proteomics Resource, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rashaun Wilson
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA; Keck MS & Proteomics Resource, Yale University School of Medicine, New Haven, CT 06520, USA
| | - William E Butler
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Michael L Diluna
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Philip Feinberg
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Medical Scientist Training Program, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Kiavash Movahedi
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium; Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, 1050 Brussels, Belgium
| | - Allen Tannenbaum
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, NY 11794, USA
| | - Sunil Koundal
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xinan Chen
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - David D Limbrick
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven J Schiff
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland, School of Medicine, Baltimore, MD 21201, USA; Department of Pathology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, the Rockefeller University, New York, NY 10065, USA
| | - Seth L Alper
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA; Department of Neurosurgery and Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Blednov YA, Da Costa A, Mason S, Mayfield J, Moss SJ, Messing RO. Apremilast-induced increases in acute ethanol intoxication and decreases in ethanol drinking in mice involve PKA phosphorylation of GABA A β3 subunits. Neuropharmacology 2022; 220:109255. [PMID: 36152689 PMCID: PMC9810330 DOI: 10.1016/j.neuropharm.2022.109255] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/23/2022] [Accepted: 09/10/2022] [Indexed: 01/05/2023]
Abstract
We previously showed that apremilast, an FDA-approved PDE4 inhibitor, selectively alters behavioral responses to ethanol and certain GABAergic drugs in a PKA-dependent manner in C57BL6/J mice. Here, we investigated if PKA phosphorylation of β3 GABAA receptor subunits is involved in apremilast regulation of ethanol, propofol, or diazepam responses. Apremilast prolonged rotarod ataxia and loss of the righting reflex by ethanol and propofol in wild-type mice, but not in β3-S408A/S409A knock-in mice. In contrast, apremilast hastened recovery from the ataxic and sedative effects of diazepam in both genotypes. These findings suggest that apremilast modulation of ethanol and propofol behaviors in wild-type mice is mediated by β3 subunit phosphorylation, whereas its actions on diazepam responses involve a different mechanism. The PKA inhibitor H-89 prevented apremilast modulation of ethanol-induced ataxia. Apremilast sensitized wild-type males to ethanol-induced ataxia and decreased acute functional tolerance (AFT) in females but had no effect in β3-S408A/S409A mice of either sex. These results could not be attributed to genotype differences in blood ethanol clearance. There were also no baseline genotype differences in ethanol consumption and preference in two different voluntary drinking procedures. However, the ability of apremilast to reduce ethanol consumption was diminished in β3-S408A/S409A mice. Our results provide strong evidence that PKA-dependent phosphorylation of β3 GABAA receptor subunits is an important mechanism by which apremilast increases acute sensitivity to alcohol, decreases AFT, and decreases ethanol drinking.
Collapse
Affiliation(s)
- Yuri A Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Adriana Da Costa
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sonia Mason
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jody Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Robert O Messing
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
4
|
Lee AM, Mansuri MS, Wilson RS, Lam TT, Nairn AC, Picciotto MR. Sex Differences in the Ventral Tegmental Area and Nucleus Accumbens Proteome at Baseline and Following Nicotine Exposure. Front Mol Neurosci 2021; 14:657064. [PMID: 34335180 PMCID: PMC8317211 DOI: 10.3389/fnmol.2021.657064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022] Open
Abstract
Sex differences in behaviors relevant to nicotine addiction have been observed in rodent models and human subjects. Behavioral, imaging, and epidemiological studies also suggest underlying sex differences in mesolimbic dopamine signaling pathways. In this study we evaluated the proteome in the ventral tegmental area (VTA) and nucleus accumbens (NAc) shell in male and female mice. Experimental groups included two mouse strains (C3H/HeJ and C57BL/6J) at baseline, a sub-chronic, rewarding regimen of nicotine in C3H/HeJ mice, and chronic nicotine administration and withdrawal in C57BL/6J mice. Isobaric labeling with a TMT 10-plex system, sample fractionation, and tandem mass spectrometry were used to quantify changes in protein abundance. In C3H/HeJ mice, similar numbers of proteins were differentially regulated between sexes at baseline compared with within each sex after sub-chronic nicotine administration. In C57BL/6J mice, there were significantly greater numbers of proteins differentially regulated between sexes at baseline compared with within each sex after chronic nicotine administration and withdrawal. Despite differences by sex, strain, and nicotine exposure parameters, glial fibrillary acidic protein (GFAP) and dopamine and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32, Ppp1r1b) were repeatedly identified as significantly altered proteins, especially in the VTA. Further, network analyses showed sex- and nicotine-dependent regulation of a number of signaling pathways, including dopaminergic signaling. Sub-chronic nicotine exposure in female mice increased proteins related to dopaminergic signaling in the NAc shell but decreased them in the VTA, whereas the opposite pattern was observed in male mice. In contrast, dopaminergic signaling pathways were similarly upregulated in both male and female VTA after chronic nicotine and withdrawal. Overall, this study identifies significant sex differences in the proteome of the mesolimbic system, at baseline and after nicotine reward or withdrawal, which may help explain differential trajectories and susceptibility to nicotine addiction in males and females.
Collapse
Affiliation(s)
- Angela M Lee
- Department of Psychiatry, Yale University, New Haven, CT, United States.,Yale Interdepartmental Neuroscience Program, New Haven, CT, United States
| | - Mohammad Shahid Mansuri
- Yale/NIDA Neuroproteomics Center, New Haven, CT, United States.,Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, United States
| | - Rashaun S Wilson
- Yale/NIDA Neuroproteomics Center, New Haven, CT, United States.,Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, United States.,W.M Keck Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT, United States
| | - TuKiet T Lam
- Yale/NIDA Neuroproteomics Center, New Haven, CT, United States.,Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, United States.,W.M Keck Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT, United States
| | - Angus C Nairn
- Department of Psychiatry, Yale University, New Haven, CT, United States.,Yale/NIDA Neuroproteomics Center, New Haven, CT, United States
| | - Marina R Picciotto
- Department of Psychiatry, Yale University, New Haven, CT, United States.,Yale Interdepartmental Neuroscience Program, New Haven, CT, United States
| |
Collapse
|
5
|
Wills L, Kenny PJ. Addiction-related neuroadaptations following chronic nicotine exposure. J Neurochem 2021; 157:1652-1673. [PMID: 33742685 DOI: 10.1111/jnc.15356] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
The addiction-relevant molecular, cellular, and behavioral actions of nicotine are derived from its stimulatory effects on neuronal nicotinic acetylcholine receptors (nAChRs) in the central nervous system. nAChRs expressed by dopamine-containing neurons in the ventral midbrain, most notably in the ventral tegmental area (VTA), contribute to the reward-enhancing properties of nicotine that motivate the use of tobacco products. nAChRs are also expressed by neurons in brain circuits that regulate aversion. In particular, nAChRs expressed by neurons in the medial habenula (mHb) and the interpeduncular nucleus (IPn) to which the mHb almost exclusively projects regulate the "set-point" for nicotine aversion and control nicotine intake. Different nAChR subtypes are expressed in brain reward and aversion circuits and nicotine intake is titrated to maximally engage reward-enhancing nAChRs while minimizing the recruitment of aversion-promoting nAChRs. With repeated exposure to nicotine, reward- and aversion-related nAChRs and the brain circuits in which they are expressed undergo adaptations that influence whether tobacco use will transition from occasional to habitual. Genetic variation that influences the sensitivity of addiction-relevant brain circuits to the actions of nicotine also influence the propensity to develop habitual tobacco use. Here, we review some of the key advances in our understanding of the mechanisms by which nicotine acts on brain reward and aversion circuits and the adaptations that occur in these circuits that may drive addiction to nicotine-containing tobacco products.
Collapse
Affiliation(s)
- Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| |
Collapse
|
6
|
Scholze P, Huck S. The α5 Nicotinic Acetylcholine Receptor Subunit Differentially Modulates α4β2 * and α3β4 * Receptors. Front Synaptic Neurosci 2020; 12:607959. [PMID: 33343327 PMCID: PMC7744819 DOI: 10.3389/fnsyn.2020.607959] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/11/2020] [Indexed: 11/30/2022] Open
Abstract
Nicotine, the principal reinforcing compound in tobacco, acts in the brain by activating neuronal nicotinic acetylcholine receptors (nAChRs). This review summarizes our current knowledge regarding how the α5 accessory nAChR subunit, encoded by the CHRNA5 gene, differentially modulates α4β2* and α3β4* receptors at the cellular level. Genome-wide association studies have linked a gene cluster in chromosomal region 15q25 to increased susceptibility to nicotine addiction, lung cancer, chronic obstructive pulmonary disease, and peripheral arterial disease. Interestingly, this gene cluster contains a non-synonymous single-nucleotide polymorphism (SNP) in the human CHRNA5 gene, causing an aspartic acid (D) to asparagine (N) substitution at amino acid position 398 in the α5 nAChR subunit. Although other SNPs have been associated with tobacco smoking behavior, efforts have focused predominantly on the D398 and N398 variants in the α5 subunit. In recent years, significant progress has been made toward understanding the role that the α5 nAChR subunit—and the role of the D398 and N398 variants—plays on nAChR function at the cellular level. These insights stem primarily from a wide range of experimental models, including receptors expressed heterologously in Xenopus oocytes, various cell lines, and neurons derived from human induced pluripotent stem cells (iPSCs), as well as endogenous receptors in genetically engineered mice and—more recently—rats. Despite providing a wealth of available data, however, these studies have yielded conflicting results, and our understanding of the modulatory role that the α5 subunit plays remains incomplete. Here, we review these reports and the various techniques used for expression and analysis in order to examine how the α5 subunit modulates key functions in α4β2* and α3β4* receptors, including receptor trafficking, sensitivity, efficacy, and desensitization. In addition, we highlight the strikingly different role that the α5 subunit plays in Ca2+ signaling between α4β2* and α3β4* receptors, and we discuss whether the N398 α5 subunit variant can partially replace the D398 variant.
Collapse
Affiliation(s)
- Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Sigismund Huck
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Lee AM, Picciotto MR. Effects of nicotine on DARPP-32 and CaMKII signaling relevant to addiction. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 90:89-115. [PMID: 33706940 PMCID: PMC8008986 DOI: 10.1016/bs.apha.2020.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Paul Greengard brought to neuroscience the idea of, and evidence for, the role of second messenger systems in neuronal signaling. The fundamental nature of his contributions is evident in the far reach of his work, relevant to various subfields and topics in neuroscience. In this review, we discuss some of Greengard's work from the perspective of nicotinic acetylcholine receptors and their relevance to nicotine addiction. Specifically, we review the roles of dopamine- and cAMP-regulated phospho-protein of 32kDa (DARPP-32) and Ca2+/calmodulin-dependent kinase II (CaMKII) in nicotine-dependent behaviors. For each protein, we discuss the historical context of their discovery and initial characterization, focusing on the extensive biochemical and immunohistochemical work conducted by Greengard and colleagues. We then briefly summarize contemporary understanding of each protein in key intracellular signaling cascades and evidence for the role of each protein with respect to systems and behaviors relevant to nicotine addiction.
Collapse
Affiliation(s)
- Angela M Lee
- Department of Psychiatry, Yale University, New Haven, CT, United States; Yale Interdepartmental Neuroscience Program, New Haven, CT, United States
| | - Marina R Picciotto
- Department of Psychiatry, Yale University, New Haven, CT, United States; Yale Interdepartmental Neuroscience Program, New Haven, CT, United States.
| |
Collapse
|
8
|
Nicotinic Receptors Underlying Nicotine Dependence: Evidence from Transgenic Mouse Models. Curr Top Behav Neurosci 2020; 45:101-121. [PMID: 32468493 DOI: 10.1007/7854_2020_134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nicotine underlies the reinforcing properties of tobacco cigarettes and e-cigarettes. After inhalation and absorption, nicotine binds to various nicotinic acetylcholine receptor (nAChR) subtypes localized on the pre- and postsynaptic membranes of cells, which subsequently leads to the modulation of cellular function and neurotransmitter signaling. In this chapter, we begin by briefly reviewing the current understanding of nicotine's actions on nAChRs and highlight considerations regarding nAChR subtype localization and pharmacodynamics. Thereafter, we discuss the seminal discoveries derived from genetically modified mouse models, which have greatly contributed to our understanding of nicotine's effects on the reward-related mesolimbic pathway and the aversion-related habenulo-interpeduncular pathway. Thereafter, emerging areas of research focusing on modulation of nAChR expression and/or function are considered. Taken together, these discoveries have provided a foundational understanding of various genetic, neurobiological, and behavioral factors underlying the motivation to use nicotine and related dependence processes, which are thereby advancing drug discovery efforts to promote long-term abstinence.
Collapse
|
9
|
Williams KR, Nairn AC. Editorial for Special Issue: Neuroproteomics. Proteomes 2019; 7:24. [PMID: 31159207 PMCID: PMC6630506 DOI: 10.3390/proteomes7020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 11/17/2022] Open
Abstract
Recent advances in mass spectrometry (MS) instrumentation [...].
Collapse
Affiliation(s)
- Kenneth R Williams
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA.
- Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA.
| | - Angus C Nairn
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA.
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, CT 06511, USA.
| |
Collapse
|
10
|
Getachew B, Csoka AB, Aschner M, Tizabi Y. Nicotine protects against manganese and iron-induced toxicity in SH-SY5Y cells: Implication for Parkinson's disease. Neurochem Int 2019; 124:19-24. [PMID: 30557592 PMCID: PMC6369010 DOI: 10.1016/j.neuint.2018.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/29/2018] [Accepted: 12/13/2018] [Indexed: 11/23/2022]
Abstract
Manganese (Mn) and iron (Fe) are trace elements that are essential for proper growth and physiological functions as both play critical role in a variety of enzymatic reactions. At high concentrations, however, they can be toxic and cause neurodegenerative disorders, particularly Parkinson-like syndromes. Nicotine, on the other hand, has been shown to have neuroprotective effects against various endogenous or exogenous toxins that selectively damage the dopaminergic cells. These cells include neuroblastoma-derived SH-SY5Y cells which express significant dopaminergic activity. However, practically no information on possible neuroprotective effects of nicotine against toxicity induced by trace elements is available. Therefore, in this study we investigated the effects of nicotine on toxicity induced by manganese or iron in these cells. Exposure of SH-SY5Y cells for 24 h to manganese (20 μM) or iron (20 μM) resulted in approximately 30% and 35% toxicity, respectively. Pretreatment with nicotine (1 μM) completely blocked the toxicities of Mn and Fe. The effects of nicotine, in turn, were blocked by selective nicotinic receptor antagonists. Thus, dihydro-beta erythroidine (DHBE), a selective alpha 4-beta 2 subtype antagonist and methyllycaconitine (MLA), a selective alpha7 antagonist, as well as mecamylamine, a non-selective nicotinic antagonist all dose-dependently blocked the protective effects of nicotine against both Mn and Fe. These findings provide further support for the potential utility of nicotine or nicotinic agonists in Parkinson's disease-like neurodegenerative disorders, including those that might be precipitated by trace elements, such as Fe and Mn. Moreover, both alpha4-beta2 and alpha7 nicotinic receptor subtypes appear to mediate the neuroprotective effects of nicotine against toxicity induced by these two trace metals.
Collapse
Affiliation(s)
- Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Antonei B Csoka
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA.
| |
Collapse
|
11
|
From Synapse to Function: A Perspective on the Role of Neuroproteomics in Elucidating Mechanisms of Drug Addiction. Proteomes 2018; 6:proteomes6040050. [PMID: 30544849 PMCID: PMC6315754 DOI: 10.3390/proteomes6040050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022] Open
Abstract
Drug addiction is a complex disorder driven by dysregulation in molecular signaling across several different brain regions. Limited therapeutic options currently exist for treating drug addiction and related psychiatric disorders in clinical populations, largely due to our incomplete understanding of the molecular pathways that influence addiction pathology. Recent work provides strong evidence that addiction-related behaviors emerge from the convergence of many subtle changes in molecular signaling networks that include neuropeptides (neuropeptidome), protein-protein interactions (interactome) and post-translational modifications such as protein phosphorylation (phosphoproteome). Advancements in mass spectrometry methodology are well positioned to identify these novel molecular underpinnings of addiction and further translate these findings into druggable targets for therapeutic development. In this review, we provide a general perspective of the utility of novel mass spectrometry-based approaches for addressing critical questions in addiction neuroscience, highlighting recent innovative studies that exemplify how functional assessments of the neuroproteome can provide insight into the mechanisms of drug addiction.
Collapse
|