1
|
Campbell AJ, Cakar S, Palstrøm NB, Riber LP, Rasmussen LM, Beck HC. A Carrier-Based Quantitative Proteomics Method Applied to Biomarker Discovery in Pericardial Fluid. Mol Cell Proteomics 2024; 23:100812. [PMID: 39004188 PMCID: PMC11387241 DOI: 10.1016/j.mcpro.2024.100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024] Open
Abstract
Data-dependent liquid chromatography tandem mass spectrometry is challenged by the large concentration range of proteins in plasma and related fluids. We adapted the SCoPE method from single-cell proteomics to pericardial fluid, where a myocardial tissue carrier was used to aid protein quantification. The carrier proteome and patient samples were labeled with distinct isobaric labels, which allowed separate quantification. Undepleted pericardial fluid from patients with type 2 diabetes mellitus and/or heart failure undergoing heart surgery was analyzed with either a traditional liquid chromatography tandem mass spectrometry method or with the carrier proteome. In total, 1398 proteins were quantified with a carrier, compared to 265 without, and a higher proportion of these proteins were of myocardial origin. The number of differentially expressed proteins also increased nearly four-fold. For patients with both heart failure and type 2 diabetes mellitus, pathway analysis of upregulated proteins demonstrated the enrichment of immune activation, blood coagulation, and stress pathways. Overall, our work demonstrates the applicability of a carrier for enhanced protein quantification in challenging biological matrices such as pericardial fluid, with potential applications for biomarker discovery. Mass spectrometry data are available via ProteomeXchange with identifier PXD053450.
Collapse
Affiliation(s)
- Amanda J Campbell
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark; Center for Clinical Proteomics (CCP), Odense University Hospital, Odense, Denmark
| | - Samir Cakar
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark; Center for Clinical Proteomics (CCP), Odense University Hospital, Odense, Denmark
| | - Nicolai B Palstrøm
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark; Center for Clinical Proteomics (CCP), Odense University Hospital, Odense, Denmark; Department of Clinical Research, Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | - Lars P Riber
- Department of Clinical Research, Faculty of Health Science, University of Southern Denmark, Odense, Denmark; Department of Cardiac, Thoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Lars M Rasmussen
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark; Center for Clinical Proteomics (CCP), Odense University Hospital, Odense, Denmark; Department of Clinical Research, Faculty of Health Science, University of Southern Denmark, Odense, Denmark; Center for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
| | - Hans C Beck
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark; Center for Clinical Proteomics (CCP), Odense University Hospital, Odense, Denmark; Department of Clinical Research, Faculty of Health Science, University of Southern Denmark, Odense, Denmark; Center for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark.
| |
Collapse
|
2
|
Palstrøm NB, Campbell AJ, Lindegaard CA, Cakar S, Matthiesen R, Beck HC. Spectral library search for improved TMTpro labelled peptide assignment in human plasma proteomics. Proteomics 2024; 24:e2300236. [PMID: 37706597 DOI: 10.1002/pmic.202300236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 09/15/2023]
Abstract
Clinical biomarker discovery is often based on the analysis of human plasma samples. However, the high dynamic range and complexity of plasma pose significant challenges to mass spectrometry-based proteomics. Current methods for improving protein identifications require laborious pre-analytical sample preparation. In this study, we developed and evaluated a TMTpro-specific spectral library for improved protein identification in human plasma proteomics. The library was constructed by LC-MS/MS analysis of highly fractionated TMTpro-tagged human plasma, human cell lysates, and relevant arterial tissues. The library was curated using several quality filters to ensure reliable peptide identifications. Our results show that spectral library searching using the TMTpro spectral library improves the identification of proteins in plasma samples compared to conventional sequence database searching. Protein identifications made by the spectral library search engine demonstrated a high degree of complementarity with the sequence database search engine, indicating the feasibility of increasing the number of protein identifications without additional pre-analytical sample preparation. The TMTpro-specific spectral library provides a resource for future plasma proteomics research and optimization of search algorithms for greater accuracy and speed in protein identifications in human plasma proteomics, and is made publicly available to the research community via ProteomeXchange with identifier PXD042546.
Collapse
Affiliation(s)
- Nicolai B Palstrøm
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
| | - Amanda J Campbell
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
| | | | - Samir Cakar
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
| | - Rune Matthiesen
- Computational and Experimental Biology Group, CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Hans C Beck
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
| |
Collapse
|
3
|
Ben Yellin, Lahav C, Sela I, Yahalom G, Shoval SR, Elon Y, Fuller J, Harel M. Analytical validation of the PROphet test for treatment decision-making guidance in metastatic non-small cell lung cancer. J Pharm Biomed Anal 2024; 238:115803. [PMID: 37871417 DOI: 10.1016/j.jpba.2023.115803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
The blood proteome, consisting of thousands of proteins engaged in various biological processes, acts as a valuable source of potential biomarkers for various medical applications. PROphet is a plasma proteomics-based test that serves as a decision-support tool for non-small cell lung cancer (NSCLC) patients, combining proteomic profiling using SomaScan technology and subsequent computational algorithm. PROphet was implemented as a laboratory developed test (LDT). Under the Clinical Laboratory Improvement Amendments (CLIA) and Commission on Office Laboratory Accreditation (COLA) regulations, prior to releasing patient test results, a clinical laboratory located in the United States employing an LDT must examine its performance characteristics with regard to analytical validity. This study describes the experimental and computational analytical validity of the PROphet test, as required by CLIA/COLA regulations. Experimental precision analysis displayed a median coefficient of variation (CV) of 3.9 % and 4.7 % for intra-plate and inter-plate examination, respectively, and the median accuracy rate between sites was 88 %. Computational precision exhibited a high accuracy rate, with 93 % of samples displaying complete concordance in results. A cross-platform comparison between SomaScan and other proteomics platforms yielded a median Spearman's rank correlation coefficient of 0.51, affirming the consistency and reliability of the SomaScan platform as used under the PROphet test. Our study presents a robust framework for evaluating the analytical validity of a platform that combines an experimental assay with subsequent computational algorithms. When applied to the PROphet test, strong analytical performance of the test was demonstrated.
Collapse
Affiliation(s)
- Ben Yellin
- OncoHost LTD, Hamelacha 17 Binyamina, 3057324, Israel
| | - Coren Lahav
- OncoHost LTD, Hamelacha 17 Binyamina, 3057324, Israel
| | - Itamar Sela
- OncoHost LTD, Hamelacha 17 Binyamina, 3057324, Israel
| | - Galit Yahalom
- OncoHost LTD, Hamelacha 17 Binyamina, 3057324, Israel
| | | | | | - James Fuller
- OncoHost Inc., 1110 SE Cary Parkway, Suite 205, Cary, NC 27518, USA
| | - Michal Harel
- OncoHost LTD, Hamelacha 17 Binyamina, 3057324, Israel.
| |
Collapse
|
4
|
Zheng M, Zhou M, Lu T, Lu Y, Qin P, Liu C. TMT and PRM Based Quantitative Proteomics to Explore the Protective Role and Mechanism of Iristectorin B in Stroke. Int J Mol Sci 2023; 24:15195. [PMID: 37894877 PMCID: PMC10607092 DOI: 10.3390/ijms242015195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Stroke is a serious disease caused by the rupture or blockage of the cerebrovascular system. Its pathogenesis is complex and involves multiple mechanisms. Iristectorin B is a natural isoflavone that has certain anti stroke effects. In this study, an in vitro stroke injury model of glyoxylate deprivation was established using PC12 cells, which was used to evaluate the anti-stroke activity of Iristectorin B in ejecta stem. The results showed that Iristectorin B, a natural isoflavone derived from Dried Shoot, significantly reduced the damage to PC12 cells caused by oxygen glucose deprivation/reoxygenation, decreased apoptosis, enhanced cell survival and reduced Ca2+, LDH and ROS levels. The results showed that Iristectorin B had a significant protective effect on Na2S2O4-injured PC12 cells, and the mechanism may be related to the protective effect of neurons in the brain. After protein extraction and various analyses were performed, a series of cutting-edge technologies were organically combined to study the quantitative proteome of each group. Differential proteins were then analyzed. According to the protein screening principle, ferroptosis-related proteins were most closely associated with stroke. The differential proteins associated with ferroptosis screened were SLC3A2, TFR1 and HMOX1, with HMOX1 being the most significantly elevated and reduced via dosing. Iristectorin B may act as a protective agent against stroke by regulating ferroptosis, and SLC3A2, TFR1 and HMOX1 may serve as potential diagnostic biomarkers for stroke, providing additional evidence to support the importance of ferroptosis in stroke.
Collapse
Affiliation(s)
- Meizhu Zheng
- College of Life Sciences, Changchun Normal University, Changchun 130032, China;
| | - Mi Zhou
- Central Laboratory, Changchun Normal University, Changchun 130032, China (T.L.); (Y.L.)
| | - Tingting Lu
- Central Laboratory, Changchun Normal University, Changchun 130032, China (T.L.); (Y.L.)
| | - Yao Lu
- Central Laboratory, Changchun Normal University, Changchun 130032, China (T.L.); (Y.L.)
| | - Peng Qin
- Central Laboratory, Changchun Normal University, Changchun 130032, China (T.L.); (Y.L.)
| | - Chunming Liu
- College of Life Sciences, Changchun Normal University, Changchun 130032, China;
| |
Collapse
|
5
|
Palstrøm NB, Overgaard M, Licht P, Beck HC. Identification of Highly Sensitive Pleural Effusion Protein Biomarkers for Malignant Pleural Mesothelioma by Affinity-Based Quantitative Proteomics. Cancers (Basel) 2023; 15:cancers15030641. [PMID: 36765599 PMCID: PMC9913626 DOI: 10.3390/cancers15030641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an asbestos-associated, highly aggressive cancer characterized by late-stage diagnosis and poor prognosis. Gold standards for diagnosis are pleural biopsy and cytology of pleural effusion (PE), both of which are limited by low sensitivity and markedly inter-observer variations. Therefore, the assessment of PE biomarkers is considered a viable and objective diagnostic tool for MPM diagnosis. We applied a novel affinity-enrichment mass spectrometry-based proteomics method for explorative analysis of pleural effusions from a prospective cohort of 84 patients referred for thoracoscopy due to clinical suspicion of MPM. Protein biomarkers with a high capability to discriminate MPM from non-MPM patients were identified, and a Random Forest algorithm was applied for building classification models. Immunohistology of pleural biopsies confirmed MPM in 40 patients and ruled out MPM in 44 patients. Proteomic analysis of pleural effusions identified panels of proteins with excellent diagnostic properties (90-100% sensitivities, 89-98% specificities, and AUC 0.97-0.99) depending on the specific protein combination. Diagnostic proteins associated with cancer growth included galactin-3 binding protein, testican-2, haptoglobin, Beta ig-h3, and protein AMBP. Moreover, we also confirmed previously reported diagnostic accuracies of the MPM markers fibulin-3 and mesothelin measured by two complementary mass spectrometry-based methods. In conclusion, a novel affinity-enrichment mass spectrometry-based proteomics identified panels of proteins in pleural effusion with extraordinary diagnostic accuracies, which are described here for the first time as biomarkers for MPM.
Collapse
Affiliation(s)
- Nicolai B. Palstrøm
- Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Martin Overgaard
- Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Peter Licht
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, 5000 Odense, Denmark
| | - Hans C. Beck
- Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
- Correspondence:
| |
Collapse
|
6
|
Systemic Biomarkers and Unique Pathways in Different Phenotypes of Heart Failure with Preserved Ejection Fraction. Biomolecules 2022; 12:biom12101419. [PMID: 36291628 PMCID: PMC9599828 DOI: 10.3390/biom12101419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for around 50% of all heart failure cases. It is a heterogeneous condition with poorly understood pathogenesis. Here, we aimed to identify unique pathogenic mechanisms in acute and chronic HFpEF and hypertrophic cardiomyopathy (HCM). We performed unbiased, comprehensive proteomic analyses of plasma samples from gender- and BMI-matched patients with acute HFpEF (n = 8), chronic HFpEF (n = 9) and HCM (n = 14) using liquid chromatography–mass spectrometry. Distinct molecular signatures were observed in different HFpEF forms. Clusters of biomarkers differentially abundant between HFpEF forms were predominantly associated with microvascular inflammation. New candidate protein markers were also identified, including leucine-rich alpha-2-glycoprotein 1 (LRG1), serum amyloid A1 (SAA1) and inter-alpha-trypsin inhibitor heavy chain 3 (ITIH3). Our study is the first to apply systematic, quantitative proteomic screening of plasma samples from patients with different subtypes of HFpEF and identify candidate biomarkers for improved management of acute and chronic HFpEF and HCM.
Collapse
|
7
|
Morote J, Aguilar A, Planas J, Trilla E. Definition of Castrate Resistant Prostate Cancer: New Insights. Biomedicines 2022; 10:689. [PMID: 35327491 PMCID: PMC8945091 DOI: 10.3390/biomedicines10030689] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/05/2022] [Accepted: 03/15/2022] [Indexed: 12/10/2022] Open
Abstract
The term castrate resistant prostate cancer (CRPC) was initially proposed by the Prostate Cancer Working Group 2 in 2008 to define the state of clinical and/or biochemical progression of prostate cancer (PCa) in an environment with very low serum testosterone concentration. Clinical progression is based on the radiological imaging proposed by the Response Evaluation Criteria in Solid Tumors (RECIST) adapted to PCa. Biochemical progression is defined as an over 25% increase in serum prostate-specific antigen within two consecutive measurements separated by at least one week, and an absolute value above 2.0 ng/mL. Finally, the castrate environment is usually defined as a serum testosterone concentration maintained below 50 ng/dL or 1.7 nmol/dL. This definition does not incorporate the new and more accurate imaging modalities to assess clinical progression and the capability of the new biochemical measurements to assess the true castration environment. Ga-68-PSMA-11 PET CT/MRI and whole-body MRI are the new imaging modalities that should replace the classic thoracic CT scan, abdomino-pelvic CT scan, and technetium 99-m bone scintigraphy. In addition, Ga-68-PSMA-11 PET is the current basis for the new therapies targeting metastatic sites. Moreover, the current methods for measuring the very low serum testosterone concentrations in clinical laboratories are the widespread chemiluminescent assays, which are inappropriate, while LC-MSMS is the only method recommended to assess the castrate environment. In addition, recent research shows that serum luteinising hormone concentration associates better than serum testosterone with the castration environment, even when it is measured with LC-MSMS. In summary, the current definition of CRPC seems outdated. An extensive update to diagnose true CRPC is also needed to differentiate CRPC men with M0 (non-metastatic) from those with M1 (metastatic) CRPC. WC: 277.
Collapse
Affiliation(s)
- Juan Morote
- Department of Urology, Vall d’Hebron Hospital, 08035 Barcelona, Spain; (A.A.); (J.P.); (E.T.)
- Department of Surgery, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Adriana Aguilar
- Department of Urology, Vall d’Hebron Hospital, 08035 Barcelona, Spain; (A.A.); (J.P.); (E.T.)
| | - Jacques Planas
- Department of Urology, Vall d’Hebron Hospital, 08035 Barcelona, Spain; (A.A.); (J.P.); (E.T.)
| | - Enrique Trilla
- Department of Urology, Vall d’Hebron Hospital, 08035 Barcelona, Spain; (A.A.); (J.P.); (E.T.)
- Department of Surgery, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|