2
|
Physiological and Proteomic Responses of Cassava to Short-Term Extreme Cool and Hot Temperature. PLANTS 2022; 11:plants11172307. [PMID: 36079689 PMCID: PMC9460903 DOI: 10.3390/plants11172307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022]
Abstract
Temperature is one of the most critical factors affecting cassava metabolism and growth. This research was conducted to investigate the effects of short-term exposure to extreme cool (15 °C) and hot (45 °C) temperature on photosynthesis, biochemical and proteomics changes in potted plants of two cassava cultivars, namely Rayong 9 and Kasetsart 50. One-month-old plants were exposed to 15, 30, and 45 °C for 60 min in a temperature chamber under light intensity of 700 μmol m−2 s−1. Compared to the optimum temperature (30 °C), exposure to 15 °C resulted in 28% reduction in stomatal conductance (gs) and 62% reduction in net photosynthesis rate (Pn). In contrast, gs under 45 °C increased 2.61 folds, while Pn was reduced by 50%. The lower Pn but higher electron transport rate (ETR) of the cold-stressed plants indicated that a greater proportion of electrons was transported via alternative pathways to protect chloroplast from being damaged by reactive oxygen species (ROS). Moreover, malondialdehyde (MDA) contents, a marker related to the amount of ROS, were significantly higher at low temperature. Proteomics analysis revealed some interesting differentially expressed proteins (DEPs) including annexin, a multi-functional protein functioning in early events of heat stress signaling. In response to low-temperature stress, AP2/ERF domain-containing protein (a cold-related transcription factor) and glutaredoxin domain-containing protein (a component of redox signaling network under cold stress) were detected. Taken together, both cultivars were more sensitive to low than high temperature. Moreover, Rayong 9 displayed higher Pn under both temperature stresses, and was more efficient in controlling ROS under cold stress than Kasetsart 50.
Collapse
|
3
|
Li R, Lombardozzi D, Shi M, Frankenberg C, Parazoo NC, Köhler P, Yi K, Guan K, Yang X. Representation of Leaf-to-Canopy Radiative Transfer Processes Improves Simulation of Far-Red Solar-Induced Chlorophyll Fluorescence in the Community Land Model Version 5. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS 2022; 14:e2021MS002747. [PMID: 35865620 PMCID: PMC9285887 DOI: 10.1029/2021ms002747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 05/15/2023]
Abstract
Recent advances in satellite observations of solar-induced chlorophyll fluorescence (SIF) provide a new opportunity to constrain the simulation of terrestrial gross primary productivity (GPP). Accurate representation of the processes driving SIF emission and its radiative transfer to remote sensing sensors is an essential prerequisite for data assimilation. Recently, SIF simulations have been incorporated into several land surface models, but the scaling of SIF from leaf-level to canopy-level is usually not well-represented. Here, we incorporate the simulation of far-red SIF observed at nadir into the Community Land Model version 5 (CLM5). Leaf-level fluorescence yield was simulated by a parametric simplification of the Soil Canopy-Observation of Photosynthesis and Energy fluxes model (SCOPE). And an efficient and accurate method based on escape probability is developed to scale SIF from leaf-level to top-of-canopy while taking clumping and the radiative transfer processes into account. SIF simulated by CLM5 and SCOPE agreed well at sites except one in needleleaf forest (R 2 > 0.91, root-mean-square error <0.19 W⋅m-2⋅sr-1⋅μm-1), and captured the day-to-day variation of tower-measured SIF at temperate forest sites (R 2 > 0.68). At the global scale, simulated SIF generally captured the spatial and seasonal patterns of satellite-observed SIF. Factors including the fluorescence emission model, clumping, bidirectional effect, and leaf optical properties had considerable impacts on SIF simulation, and the discrepancies between simulate d and observed SIF varied with plant functional type. By improving the representation of radiative transfer for SIF simulation, our model allows better comparisons between simulated and observed SIF toward constraining GPP simulations.
Collapse
Affiliation(s)
- Rong Li
- Department of Environmental SciencesUniversity of VirginiaCharlottesvilleVAUSA
| | - Danica Lombardozzi
- Climate and Global Dynamics LaboratoryNational Center for Atmospheric ResearchBoulderCOUSA
| | - Mingjie Shi
- Pacific Northwest National LaboratoryRichlandWAUSA
| | - Christian Frankenberg
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | | | - Philipp Köhler
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Koong Yi
- Department of Environmental SciencesUniversity of VirginiaCharlottesvilleVAUSA
- Earth and Environmental Sciences AreaLawrence Berkeley National LaboratoryBerkeleyCAUSA
| | - Kaiyu Guan
- College of Agricultural, Consumers, and Environmental SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- National Center of Supercomputing ApplicationsUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment (iSEE)University of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Xi Yang
- Department of Environmental SciencesUniversity of VirginiaCharlottesvilleVAUSA
| |
Collapse
|
4
|
Solanki T, García Plazaola JI, Robson TM, Fernández Marín B. Freezing induces an increase in leaf spectral transmittance of forest understorey and alpine forbs. Photochem Photobiol Sci 2022; 21:997-1009. [PMID: 35226331 DOI: 10.1007/s43630-022-00189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
Abstract
Evergreen plants growing at high latitudes or high elevations may experience freezing events in their photosynthetic tissues. Freezing events can have physical and physiological effects on the leaves which alter leaf optical properties affecting remote and proximal sensing parameters. We froze leaves of six alpine plant species (Soldanella alpina, Ranunculus kuepferi, Luzula nutans, Gentiana acaulis, Geum montanum, and Centaurea uniflora) and three evergreen forest understorey species (Hepatica nobilis, Fragaria vesca and Oxalis acetosella), and assessed their spectral transmittance and optically measured pigments, as well as photochemical efficiency of photosystem II (PSII) as an indicator of freezing damage. Upon freezing, leaves of all the species transmitted more photosynthetically active radiation (PAR) and some species had increased ultraviolet-A (UV-A) transmittance. These differences were less pronounced in alpine than in understorey species, which may be related to higher chlorophyll degradation, visible as reduced leaf chlorophyll content upon freezing in the latter species. Among these understorey forbs, the thin leaves of O. acetosella displayed the largest reduction in chlorophyll (-79%). This study provides insights into how freezing changes the leaf optical properties of wild plants which could be used to set a baseline for upscaling optical reflectance data from remote sensing. Changes in leaf transmittance may also serve to indicate photosynthetic sufficiency and physiological tolerance of freezing events, but experimental research is required to establish this functional association.
Collapse
Affiliation(s)
- Twinkle Solanki
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - José Ignacio García Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - T Matthew Robson
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland.
| | - Beatriz Fernández Marín
- Department of Botany, Ecology and Plant Physiology, University of La Laguna (ULL), 38200, Tenerife, Spain
| |
Collapse
|
5
|
Mohammed GH, Colombo R, Middleton EM, Rascher U, van der Tol C, Nedbal L, Goulas Y, Pérez-Priego O, Damm A, Meroni M, Joiner J, Cogliati S, Verhoef W, Malenovský Z, Gastellu-Etchegorry JP, Miller JR, Guanter L, Moreno J, Moya I, Berry JA, Frankenberg C, Zarco-Tejada PJ. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. REMOTE SENSING OF ENVIRONMENT 2019; 231:111177. [PMID: 33414568 PMCID: PMC7787158 DOI: 10.1016/j.rse.2019.04.030] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Remote sensing of solar-induced chlorophyll fluorescence (SIF) is a rapidly advancing front in terrestrial vegetation science, with emerging capability in space-based methodologies and diverse application prospects. Although remote sensing of SIF - especially from space - is seen as a contemporary new specialty for terrestrial plants, it is founded upon a multi-decadal history of research, applications, and sensor developments in active and passive sensing of chlorophyll fluorescence. Current technical capabilities allow SIF to be measured across a range of biological, spatial, and temporal scales. As an optical signal, SIF may be assessed remotely using highly-resolved spectral sensors and state-of-the-art algorithms to distinguish the emission from reflected and/or scattered ambient light. Because the red to far-red SIF emission is detectable non-invasively, it may be sampled repeatedly to acquire spatio-temporally explicit information about photosynthetic light responses and steady-state behaviour in vegetation. Progress in this field is accelerating with innovative sensor developments, retrieval methods, and modelling advances. This review distills the historical and current developments spanning the last several decades. It highlights SIF heritage and complementarity within the broader field of fluorescence science, the maturation of physiological and radiative transfer modelling, SIF signal retrieval strategies, techniques for field and airborne sensing, advances in satellite-based systems, and applications of these capabilities in evaluation of photosynthesis and stress effects. Progress, challenges, and future directions are considered for this unique avenue of remote sensing.
Collapse
Affiliation(s)
| | - Roberto Colombo
- Remote Sensing of Environmental Dynamics Lab., University of Milano - Bicocca, Milan, Italy
| | | | - Uwe Rascher
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Jülich, Germany
| | - Christiaan van der Tol
- University of Twente, Faculty of Geo-Information Science and Earth Observation, Enschede, The Netherlands
| | - Ladislav Nedbal
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Jülich, Germany
| | - Yves Goulas
- CNRS, Laboratoire de Météorologie Dynamique (LMD), Ecole Polytechnique, Palaiseau, France
| | - Oscar Pérez-Priego
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Alexander Damm
- Department of Geography, University of Zurich, Zurich, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
| | - Michele Meroni
- European Commission, Joint Research Centre (JRC), Ispra (VA), Italy
| | - Joanna Joiner
- NASA/Goddard Space Flight Center, Greenbelt, Maryland, United States
| | - Sergio Cogliati
- Remote Sensing of Environmental Dynamics Lab., University of Milano - Bicocca, Milan, Italy
| | - Wouter Verhoef
- University of Twente, Faculty of Geo-Information Science and Earth Observation, Enschede, The Netherlands
| | - Zbyněk Malenovský
- Department of Geography and Spatial Sciences, School of Technology, Environments and Design, College of Sciences and Engineering, University of Tasmania, Hobart, Australia
| | | | - John R. Miller
- Department of Earth and Space Science and Engineering, York University, Toronto, Canada
| | - Luis Guanter
- German Research Center for Geosciences (GFZ), Remote Sensing Section, Potsdam, Germany
| | - Jose Moreno
- Department of Earth Physics and Thermodynamics, University of Valencia, Valencia, Spain
| | - Ismael Moya
- CNRS, Laboratoire de Météorologie Dynamique (LMD), Ecole Polytechnique, Palaiseau, France
| | - Joseph A. Berry
- Department of Global Ecology, Carnegie Institution of Washington, Stanford, California, United States
| | - Christian Frankenberg
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, United States
| | - Pablo J. Zarco-Tejada
- European Commission, Joint Research Centre (JRC), Ispra (VA), Italy
- Instituto de Agriculture Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
- Department of Infrastructure Engineering, Melbourne School of Engineering, University of Melbourne, Melbourne, Victoria, Australia
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Sun-Induced Chlorophyll Fluorescence I: Instrumental Considerations for Proximal Spectroradiometers. REMOTE SENSING 2019. [DOI: 10.3390/rs11080960] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Growing interest in the proximal sensing of sun‐induced chlorophyll fluorescence (SIF) has been boosted by space-based retrievals and up-coming missions such as the FLuorescence EXplorer (FLEX). The European COST Action ES1309 “Innovative optical tools for proximal sensing of ecophysiological processes” (OPTIMISE, ES1309; https://optimise.dcs.aber.ac.uk/) has produced three manuscripts addressing the main current challenges in this field. This article provides a framework to model the impact of different instrument noise and bias on the retrieval of SIF; and to assess uncertainty requirements for the calibration and characterization of state-of-the-art SIF-oriented spectroradiometers. We developed a sensor simulator capable of reproducing biases and noises usually found in field spectroradiometers. First the sensor simulator was calibrated and characterized using synthetic datasets of known uncertainties defined from laboratory measurements and literature. Secondly, we used the sensor simulator and the characterized sensor models to simulate the acquisition of atmospheric and vegetation radiances from a synthetic dataset. Each of the sensor models predicted biases with propagated uncertainties that modified the simulated measurements as a function of different factors. Finally, the impact of each sensor model on SIF retrieval was analyzed. Results show that SIF retrieval can be significantly affected in situations where reflectance factors are barely modified. SIF errors were found to correlate with drivers of instrumental-induced biases which are as also drivers of plant physiology. This jeopardizes not only the retrieval of SIF, but also the understanding of its relationship with vegetation function, the study of diel and seasonal cycles and the validation of remote sensing SIF products. Further work is needed to determine the optimal requirements in terms of sensor design, characterization and signal correction for SIF retrieval by proximal sensing. In addition, evaluation/validation methods to characterize and correct instrumental responses should be developed and used to test sensors performance in operational conditions.
Collapse
|
7
|
Upscaling Solar-Induced Chlorophyll Fluorescence from an Instantaneous to Daily Scale Gives an Improved Estimation of the Gross Primary Productivity. REMOTE SENSING 2018. [DOI: 10.3390/rs10101663] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Solar-induced chlorophyll fluorescence (SIF) is closely linked to the photosynthesis of plants and has the potential to estimate gross primary production (GPP) at different temporal and spatial scales. However, remotely sensed SIF at a ground or space level is usually instantaneous, which cannot represent the daily total SIF. The temporal mismatch between instantaneous SIF (SIFinst) and daily GPP (GPPdaily) impacts their correlation across space and time. Previous studies have upscaled SIFinst to the daily scale based on the diurnal cycle in the cosine of the solar zenith angle ( cos ( SZA ) ) to correct the effects of latitude and length of the day on the variations in the SIF-GPP correlation. However, the important effects of diurnal weather changes due to cloud and atmospheric scattering were not considered. In this study, we present a SIF upscaling method using photosynthetically active radiation (PAR) as a driving variable. First, a conversion factor (i.e., the ratio of the instantaneous PAR (PARinst) to daily PAR (PARdaily)) was used to upscale in-situ SIF measurements from the instantaneous to daily scale. Then, the performance of the SIF upscaling method was evaluated under changing weather conditions and different latitudes using continuous tower-based measurements at two sites. The results prove that our PAR-based method can reduce not only latitude-dependent but also the weather-dependent variations in the SIF-GPP model. Specifically, the PAR-based method gave a more accurate prediction of diurnal and daily SIF (SIFdaily) than the cos ( SZA ) -based method, with decreased relative root mean square error (RRMSE) values from 42.2% to 25.6% at half-hour intervals and from 25.4% to 13.3% at daily intervals. Moreover, the PAR-based upscaled SIFdaily had a stronger correlation with the daily absorbed PAR (APAR) than both the SIFinst and cos ( SZA ) -based upscaled SIFdaily, especially for cloudy days with a coefficient of determination (R2) that increased from approximately 0.5 to 0.8. Finally, the PAR-based SIFdaily was linked to GPPdaily and compared to the SIFinst or cos ( SZA ) -based SIFdaily. The results indicate that the SIF-GPP correlation can obviously be improved, with an increased R2 from approximately 0.65 to 0.75. Our study confirms the importance of upscaling SIF from the instantaneous to daily scale when linking SIF with GPP and emphasizes the need to take diurnal weather changes into account for SIF temporal upscaling.
Collapse
|
8
|
Sun-induced fluorescence and gross primary productivity during a heat wave. Sci Rep 2018; 8:14169. [PMID: 30242255 PMCID: PMC6155073 DOI: 10.1038/s41598-018-32602-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/12/2018] [Indexed: 11/23/2022] Open
Abstract
Remote sensing of sun-induced chlorophyll fluorescence (SIF) has been suggested as a promising approach for probing changes in global terrestrial gross primary productivity (GPP). To date, however, most studies were conducted in situations when/where changes in both SIF and GPP were driven by large changes in the absorbed photosynthetically active radiation (APAR) and phenology. Here we quantified SIF and GPP during a short-term intense heat wave at a Mediterranean pine forest, during which changes in APAR were negligible. GPP decreased linearly during the course of the heat wave, while SIF declined slightly initially and then dropped dramatically during the peak of the heat wave, temporally coinciding with a biochemical impairment of photosynthesis inferred from the increase in the uptake ratio of carbonyl sulfide to carbon dioxide. SIF thus accounted for less than 35% of the variability in GPP and, even though it responded to the impairment of photosynthesis, appears to offer limited potential for quantitatively monitoring GPP during heat waves in the absence of large changes in APAR.
Collapse
|