1
|
Assessment of Suitable Gridded Climate Datasets for Large-Scale Hydrological Modelling over South Korea. REMOTE SENSING 2022. [DOI: 10.3390/rs14153535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
There is a large number of grid-based climate datasets available which differ in terms of their data source, estimation procedures, and spatial and temporal resolutions. This study evaluates the performance of diverse meteorological datasets in terms of representing spatio-temporal climate variabilities based on a national-scale domain over South Korea. Eleven precipitation products, including six satellite-based data (CMORPH, MSWEP, MERRA, PERSIANN, TRMM, and TRMM-RT) and five reanalysis-based data (ERA5, JRA-55, CPC-U, NCEP-DOE, and K-Hidra) and four temperature products (MERRA, ERA5, CPC-U, and NCEP-DOE) are investigated. In addition, the hydrological performance of forty-four input combinations of climate datasets are explored by using the Variable Infiltration Capacity (VIC) macroscale model. For this analysis, the VIC model is independently calibrated for each combination of input and the response to each combination is then evaluated with in situ streamflow data. Our results show that the gridded datasets perform differently particularly in representing precipitation variability. When a diverse combination of the datasets are used to represent spatio-temporal variability of streamflow through the hydrological model, K-Hidra and CPC-U performed best for precipitation and temperature, followed by the MERRA and ERA5 datasets, respectively. Lastly, we obtain only marginal improvement in the hydrological performance when utilizing multiple climate datasets after comparing it to a single hydrological simulation with the best performing climate dataset. Overall, our results indicate that the hydrological performance may vary considerably based on the selection of climate datasets, emphasizing the importance of regional evaluation studies for meteorological datasets.
Collapse
|
2
|
A Comprehensive Evaluation of Gridded L-, C-, and X-Band Microwave Soil Moisture Product over the CZO in the Central Ganga Plains, India. REMOTE SENSING 2022. [DOI: 10.3390/rs14071629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent developments in passive microwave remote sensing have provided an effective tool for monitoring global soil moisture (SM) observations on a spatiotemporal basis, filling the gap of uneven in-situ measurement distribution. In this paper, four passive microwave SM products from three bands (L, C, and X) are evaluated using in-situ observations, over a dry–wet cycle agricultural (mostly paddy/wheat cycle crops) critical zone observatory (CZO) in the Central Ganga basin, India. The L-band and C/X-band information from Soil Moisture Active Passive (SMAP) Passive Enhanced Level 3 (SMAP-L3) and Advanced Microwave Scanning Radiometer 2 (AMSR2), respectively, was selected for the evaluation. The AMSR2 SM products used here were derived using the Land Parameter Retrieval Model (LPRM) algorithm. Spatially averaged observations from 20 in-situ distributed locations were initially calibrated with a single and continuous monitoring station to obtain long-term ground-based data. Furthermore, several statistical metrices along with the triple collocation (TC) error model were used to evaluate the overall accuracy and random error variance of the remote sensing products. The results indicated an overall superior performance of SMAP-L3 with a slight dry bias (−0.040 m3·m−3) and a correlation of 0.712 with in-situ observations. This also met the accuracy requirement (0.04 m3·m−3) during most seasons with a modest accuracy (0.059 m3·m−3) for the entire experimental period. Among the LPRM datasets, C1 and C2 products behaved similarly (R = 0.621) with a ubRMSE of 0.068 and 0.081, respectively. The X-band product showed a relatively poor performance compared to the other LPRM products. Seasonal performance analysis revealed a higher correlation for all the satellite SM products during monsoon season, indicating a strong seasonality of precipitation. The TC analysis indicated the lowest error variance (0.02 ± 0.003 m3·m−3) for the SMAP-L3. In the end, we introduced Spearman’s rank correlation to assess the dynamic response of SM observations to climatic and vegetation parameters.
Collapse
|
3
|
Enhancing Spatial Resolution of SMAP Soil Moisture Products through Spatial Downscaling over a Large Watershed: A Case Study for the Susquehanna River Basin in the Northeastern United States. REMOTE SENSING 2022. [DOI: 10.3390/rs14030776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Soil moisture (SM) with a high spatial resolution plays a paramount role in many local and regional hydrological and agricultural applications. The advent of L-band passive microwave satellites allowed for it to be possible to measure near-surface SM at a global scale compared to in situ measurements. However, their use is often limited because of their coarse spatial resolution. Aiming to address this limitation, random forest (RF) models are adopted to downscale the SMAP level-3 (L3SMP, 36 km) and SMAP enhanced (L3SMP_E, 9 km) SM to 1 km. A suite of predictors derived from the Sentinel-1 C-band SAR and MODIS is used in the downscaling process. The RF models are separately trained and verified at both spatial scales (i.e., 36 and 9 km) considering two experiments: (1) using predictors derived from the MODIS and Sentinel-1 along with other predictors such as elevation and brightness temperature and (2) using all predictors of the first experiment except for the Sentinel-1 predictors. Only dates when the Sentinel-1 images were available are considered for the comparison of the two experiments. The comparison of the results of the two experiments indicates that the removal of Sentinel-1 predictors from the second experiment only reduces the R value from 0.84 to 0.83 and from 0.91 to 0.86 for 36 and 9 km spatial scales, respectively. Among the predictors used in the downscaling, the brightness temperature in VV polarization is identified as the most important predictor, followed by NDVI, surface albedo and API. On the contrary, the Sentinel-1 predictors play a less important role with no marked contribution in enhancing the predictive accuracy of RF models. In general, the two experiments have limitation, such as a small sample size for the training of the RF model because of the scarcity of Sentinel-1 images (i.e., revisit time of 12 days). Therefore, based on this limitation, a third experiment is proposed, in which the Sentinel-1 predictors are not considered at all in the training of the RF models. The results of the third experiment show a good agreement between the downscaled L3SMP and L3SMP_E SM, and in situ SM measurements at both spatial scales. In addition, the temporal availability of the downscaled SM increased. Moreover, the downscaled SM from both SMAP products presented greater spatial detail while preserving the spatial patterns found in their original products. The use of the two SMAP SM products as background fields for the downscaling process does not show marked differences. Overall, this study demonstrates encouraging results in the downscaling of SMAP SM products over humid climate with warm summers dominated by vegetation.
Collapse
|
4
|
Munawar HS, Hammad AWA, Waller ST. Remote Sensing Methods for Flood Prediction: A Review. SENSORS 2022; 22:s22030960. [PMID: 35161706 PMCID: PMC8838435 DOI: 10.3390/s22030960] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023]
Abstract
Floods are a major cause of loss of lives, destruction of infrastructure, and massive damage to a country's economy. Floods, being natural disasters, cannot be prevented completely; therefore, precautionary measures must be taken by the government, concerned organizations such as the United Nations Office for Disaster Risk Reduction and Office for the coordination of Human Affairs, and the community to control its disastrous effects. To minimize hazards and to provide an emergency response at the time of natural calamity, various measures must be taken by the disaster management authorities before the flood incident. This involves the use of the latest cutting-edge technologies which predict the occurrence of disaster as early as possible such that proper response strategies can be adopted before the disaster. Floods are uncertain depending on several climatic and environmental factors, and therefore are difficult to predict. Hence, improvement in the adoption of the latest technology to move towards automated disaster prediction and forecasting is a must. This study reviews the adoption of remote sensing methods for predicting floods and thus focuses on the pre-disaster phase of the disaster management process for the past 20 years. A classification framework is presented which classifies the remote sensing technologies being used for flood prediction into three types, which are: multispectral, radar, and light detection and ranging (LIDAR). Further categorization is performed based on the method used for data analysis. The technologies are examined based on their relevance to flood prediction, flood risk assessment, and hazard analysis. Some gaps and limitations present in each of the reviewed technologies have been identified. A flood prediction and extent mapping model are then proposed to overcome the current gaps. The compiled results demonstrate the state of each technology's practice and usage in flood prediction.
Collapse
Affiliation(s)
- Hafiz Suliman Munawar
- School of Built Environment, University of New South Wales, Kensington, Sydney, NSW 2052, Australia;
- Correspondence:
| | - Ahmed W. A. Hammad
- School of Built Environment, University of New South Wales, Kensington, Sydney, NSW 2052, Australia;
| | - S. Travis Waller
- School of Civil and Environmental Engineering, University of New South Wales, Kensington, Sydney, NSW 2052, Australia;
| |
Collapse
|
5
|
Nogueira M, Boussetta S, Balsamo G, Albergel C, Trigo IF, Johannsen F, Miralles DG, Dutra E. Upgrading Land-Cover and Vegetation Seasonality in the ECMWF Coupled System: Verification With FLUXNET Sites, METEOSAT Satellite Land Surface Temperatures, and ERA5 Atmospheric Reanalysis. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2021; 126:e2020JD034163. [PMID: 35866004 PMCID: PMC9286567 DOI: 10.1029/2020jd034163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/15/2021] [Accepted: 07/16/2021] [Indexed: 06/15/2023]
Abstract
In this study, we show that limitations in the representation of land cover and vegetation seasonality in the European Centre for Medium-Range Weather Forecasting (ECMWF) model are partially responsible for large biases (up to ∼10°C, either positive or negative depending on the region) on the simulated daily maximum land surface temperature (LST) with respect to satellite Earth Observations (EOs) products from the Land Surface Analysis Satellite Application Facility. The error patterns were coherent in offline land-surface and coupled land-atmosphere simulations, and in ECMWF's latest generation reanalysis (ERA5). Subsequently, we updated the ECMWF model's land cover characterization leveraging on state-of-the-art EOs-the European Space Agency Climate Change Initiative land cover data set and the Copernicus Global Land Services leaf area index. Additionally, we tested a clumping parameterization, introducing seasonality to the effective low vegetation coverage. The updates reduced the overall daily maximum LST bias and unbiased root-mean-squared errors. In contrast, the implemented updates had a neutral impact on daily minimum LST. Our results also highlighted the complex regional heterogeneities in the atmospheric sensitivity to land cover and vegetation changes, particularly with issues emerging over eastern Brazil and northeastern Asia. These issues called for a re-calibration of model parameters (e.g., minimum stomatal resistance, roughness length, rooting depth), along with a revision of several model assumptions (e.g., snow shading by high vegetation).
Collapse
Affiliation(s)
- Miguel Nogueira
- Instituto Dom Luiz, IDLFaculty of SciencesUniversity of LisbonLisbonPortugal
| | | | | | | | - Isabel F. Trigo
- Instituto Dom Luiz, IDLFaculty of SciencesUniversity of LisbonLisbonPortugal
- Instituto Português do Mar e da AtmosferaLisbonPortugal
| | - Frederico Johannsen
- Instituto Dom Luiz, IDLFaculty of SciencesUniversity of LisbonLisbonPortugal
| | | | - Emanuel Dutra
- Instituto Dom Luiz, IDLFaculty of SciencesUniversity of LisbonLisbonPortugal
- Instituto Português do Mar e da AtmosferaLisbonPortugal
| |
Collapse
|
6
|
Ngo PTT, Pham TD, Hoang ND, Tran DA, Amiri M, Le TT, Hoa PV, Bui PV, Nhu VH, Bui DT. A new hybrid equilibrium optimized SysFor based geospatial data mining for tropical storm-induced flash flood susceptible mapping. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111858. [PMID: 33360552 DOI: 10.1016/j.jenvman.2020.111858] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Flash flood is one of the most dangerous hydrologic and natural phenomena and is considered as the top ranking of such events among various natural disasters due to their fast onset characteristics and the proportion of individual fatalities. Mapping the probability of flash flood events remains challenges because of its complexity and rapid onset of precipitation. Thus, this study aims to propose a state-of-the-art data mining approach based on a hybrid equilibrium optimized SysFor, namely, the HE-SysFor model, for spatial prediction of flash floods. A tropical storm region located in the Northwest areas of Vietnam is selected as a case study. For this purpose, 1866 flash-flooded locations and ten indicators were used. The results show that the proposed HE-SysFor model yielded the highest predictive performance (total accuracy = 93.8%, Kappa index = 0.875, F1-score = 0.939, and AUC = 0.975) and produced the better performance than those of the C4.5 decision tree (C4.5), the radial basis function-based support vector machine (SVM-RBF), the logistic regression (LReg), and deep learning neural network (DeepLNN) models in both the training and the testing phases. Among the ten indicators, elevation, slope, and land cover are the most important. It is concluded that the proposed model provides an alternative tool and may help for effectively monitoring flash floods in tropical areas and robust policies for decision making in mitigating the flash flood impacts.
Collapse
Affiliation(s)
- Phuong-Thao Thi Ngo
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Tien Dat Pham
- Center for Agricultural Research and Ecological Studies (CARES), Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, 100000, Viet Nam
| | - Nhat-Duc Hoang
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Civil Engineering, Duy Tan University, P809 - 03 Quang Trung, Da Nang, 550000, Viet Nam
| | - Dang An Tran
- Faculty of Water Resources Engineering, Thuyloi University, 175 Tay Son, Dong Da, Ha Noi, 100000, Viet Nam
| | - Mahdis Amiri
- Department of Watershed & Arid Zone Management, Gorgan University of Agricultural Sciences & Natural Resources, Gorgan, 4918943464, Iran
| | - Thu Trang Le
- Laboratoire Magmas et Volcans, Université Clermont Auvergne, CNRS, IRD, OPGC, F-63000, Clermont-Ferrand, France
| | - Pham Viet Hoa
- Ho Chi Minh City Institute of Resources Geography, Vietnam Academy of Science and Technology, Mac Dinh Chi 1, Ben Nghe, 1 District, Ho Chi Minh City, 700000, Viet Nam
| | - Phong Van Bui
- Department of Hydrogeology and Engineering Geology, Vietnam Institute of Geosciences and Mineral Resources (VIGMR), Viet Nam
| | - Viet-Ha Nhu
- Department of Geological-Geotechnical Engineering, Hanoi University of Mining and Geology, Hanoi, Viet Nam
| | - Dieu Tien Bui
- Geographic Information Science Research Group, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; GIS Group, Department of Business and IT, University of South-Eastern Norway, N-3800 Bø i Telemark, Norway.
| |
Collapse
|
7
|
Brocca L, Massari C, Pellarin T, Filippucci P, Ciabatta L, Camici S, Kerr YH, Fernández-Prieto D. River flow prediction in data scarce regions: soil moisture integrated satellite rainfall products outperform rain gauge observations in West Africa. Sci Rep 2020; 10:12517. [PMID: 32719498 PMCID: PMC7385167 DOI: 10.1038/s41598-020-69343-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 07/08/2020] [Indexed: 12/04/2022] Open
Abstract
Satellite precipitation products have been largely improved in the recent years particularly with the launch of the global precipitation measurement (GPM) core satellite. Moreover, the development of techniques for exploiting the information provided by satellite soil moisture to complement/enhance precipitation products have improved the accuracy of accumulated rainfall estimates over land. Such satellite enhanced precipitation products, available with a short latency (< 1 day), represent an important and new source of information for river flow prediction and water resources management, particularly in developing countries in which ground observations are scarcely available and the access to such data is not always ensured. In this study, three recently developed rainfall products obtained from the integration of GPM rainfall and satellite soil moisture products have been used; namely GPM+SM2RAIN, PRISM-SMOS, and PRISM-SMAP. The prediction of observed daily river discharge at 10 basins located in Europe (4), West Africa (3) and South Africa (3) is carried out. For comparison, we have also considered three rainfall products based on: (1) GPM only, i.e., the Early Run version of the Integrated Multi-Satellite Retrievals for GPM (GPM-ER), (2) rain gauges, i.e., the Global Precipitation Climatology Centre, and (3) the latest European Centre for Medium-Range Weather Forecasts reanalysis, ERA5. Three different conceptual and lumped rainfall-runoff models are employed to obtain robust and reliable results over the 3-year data period 2015–2017. Results indicate that, particularly over scarcely gauged areas (West Africa), the integrated products outperform both ground- and reanalysis-based rainfall estimates. For all basins, the GPM+SM2RAIN product is performing the best among the short latency products with mean Kling–Gupta Efficiency (KGE) equal to 0.87, and significantly better than GPM-ER (mean KGE = 0.77). The integrated products are found to reproduce particularly well the high flows. These results highlight the strong need to disseminate such integrated satellite rainfall products for hydrological (and agricultural) applications in poorly gauged areas such as Africa and South America.
Collapse
Affiliation(s)
- Luca Brocca
- Research Institute for Geo-Hydrological Protection, National Research Council, Via della Madonna Alta 126, 06128, Perugia, Italy.
| | - Christian Massari
- Research Institute for Geo-Hydrological Protection, National Research Council, Via della Madonna Alta 126, 06128, Perugia, Italy
| | - Thierry Pellarin
- University Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000, Grenoble, France
| | - Paolo Filippucci
- Research Institute for Geo-Hydrological Protection, National Research Council, Via della Madonna Alta 126, 06128, Perugia, Italy
| | - Luca Ciabatta
- Research Institute for Geo-Hydrological Protection, National Research Council, Via della Madonna Alta 126, 06128, Perugia, Italy
| | - Stefania Camici
- Research Institute for Geo-Hydrological Protection, National Research Council, Via della Madonna Alta 126, 06128, Perugia, Italy
| | - Yann H Kerr
- Centre d'Etudes Spatiales de la BIOsphère, Université Toulouse 3 CNES CNRS IRD, INRA, Toulouse, France
| | | |
Collapse
|
8
|
A Hybrid Approach Combining Conceptual Hydrological Models, Support Vector Machines and Remote Sensing Data for Rainfall-Runoff Modeling. REMOTE SENSING 2020. [DOI: 10.3390/rs12111801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Understanding catchment response to rainfall events is important for accurate runoff estimation in many water-related applications, including water resources management. This study introduced a hybrid model, the Tank-least squared support vector machine (LSSVM), that incorporated intermediate state variables from a conceptual tank model within the least squared support vector machine (LSSVM) framework in order to describe aspects of the rainfall-runoff (RR) process. The efficacy of the Tank-LSSVM model was demonstrated with hydro-meteorological data measured in the Yongdam Catchment between 2007 and 2016, South Korea. We first explored the role of satellite soil moisture (SM) data (i.e., European Space Agency (ESA) CCI) in the rainfall-runoff modeling. The results indicated that the SM states inferred from the ESA CCISWI provided an effective means of describing the temporal dynamics of SM. Further, the Tank-LSSVM model’s ability to simulate daily runoff was assessed by using goodness of fit measures (i.e., root mean square error, Nash Sutcliffe coefficient (NSE), and coefficient of determination). The Tank-LSSVM models’ NSE were all classified as “very good” based on their performance during the training and testing periods. Compared to individual LSSVM and Tank models, improved daily runoff simulations were seen in the proposed Tank-LSSVM model. In particular, low flow simulations demonstrated the improvement of the Tank-LSSVM model compared to the conventional tank model.
Collapse
|
9
|
The Impact of SMOS Soil Moisture Data Assimilation within the Operational Global Flood Awareness System (GloFAS). REMOTE SENSING 2020. [DOI: 10.3390/rs12091490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study the impacts of Soil Moisture and Ocean Salinity (SMOS) soil moisture data assimilation upon the streamflow prediction of the operational Global Flood Awareness System (GloFAS) were investigated. Two GloFAS experiments were performed, one which used hydro-meteorological forcings produced with the assimilation of the SMOS data, the other using forcings which excluded the assimilation of the SMOS data. Both sets of experiment results were verified against streamflow observations in the United States and Australia. Skill scores were computed for each experiment against the observation datasets, the differences in the skill scores were used to identify where GloFAS skill may be affected by the assimilation of SMOS soil moisture data. In addition, a global assessment was made of the impact upon the 5th and 95th GloFAS flow percentiles to see how SMOS data assimilation affected low and high flows respectively. Results against in-situ observations found that GloFAS skill score was only affected by a small amount. At a global scale, the results showed a large impact on high flows in areas such as the Hudson Bay, central United States, the Sahel and Australia. There was no clear spatial trend to these differences as opposing signs occurred within close proximity to each other. Investigating the differences between the simulations at individual gauging stations showed that they often only occurred during a single flood event; for the remainder of the simulation period the experiments were almost identical. This suggests that SMOS data assimilation may affect the generation of surface runoff during high flow events, but may have less impact on baseflow generation during the remainder of the hydrograph. To further understand this, future work could assess the impact of SMOS data assimilation upon specific hydrological components such as surface and subsurface runoff.
Collapse
|
10
|
Azimi S, Dariane AB, Modanesi S, Bauer-Marschallinger B, Bindlish R, Wagner W, Massari C. Assimilation of Sentinel 1 and SMAP - based satellite soil moisture retrievals into SWAT hydrological model: the impact of satellite revisit time and product spatial resolution on flood simulations in small basins. JOURNAL OF HYDROLOGY 2020; 581:124367. [PMID: 33154604 PMCID: PMC7608049 DOI: 10.1016/j.jhydrol.2019.124367] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In runoff generation process, soil moisture plays an important role as it controls the magnitude of the flood events in response to the rainfall inputs. In this study, we investigated the ability of a new era of satellite soil moisture retrievals to improve the Soil & Water Assessment Tool (SWAT) daily discharge simulations via soil moisture data assimilation for two small (< 500 km2) and hydrologically different catchments located in Central Italy. We ingested 1) the Soil Moisture Active and Passive (SMAP) Enhanced L3 Radiometer Global Daily 9 km EASE-Grid soil moisture, 2) the Advanced SCATterometer (ASCAT) H113 soil moisture product released within the EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF) which has a nearly daily temporal resolution and sampling of 12.5 km, and 3) a fused ASCAT/Sentinel-1 (S1) satellite soil moisture product named SCATSAR-SWI with temporal and spatial sampling of 1 day and 1 km, respectively into SWAT hydrological model via the Ensemble Kalman Filter (EnKF). Different configurations were tested with the aim of exploring the effect of the hydrological regime, the land use conditions, the spatial sampling and the revisit time of the products (which controls the amount of available data to be potentially ingested). Results show a general improvement of SWAT discharge simulations for all products in terms of error and Nash Sutcliffe efficiency index. In particular, we found a relatively good behavior of both the active and the passive products in terms of low flows improvement especially for the catchment characterized by a higher baseflow component. The benefit of the higher spatial resolution of SCATSAR-SWI obtained via S1 over ASCAT was small, likely due to very challenging areas for the S1 retrieval. Eventually, better performances were obtained for the passive product in the more forested catchment. With the aim of exploring the benefit of having more frequent satellite soil moisture observations to be ingested, we tested the performance of the ASCAT product with a reduced temporal sampling obtained by temporally matching ASCAT observations to that of SMAP. The results show a significant reduction of the performance of ASCAT, suggesting that the correction frequency (due to the higher number of observations available) for small catchments is an important aspect for improving flood forecasting as it helps to adjust more frequently the pre-storm soil moisture conditions.
Collapse
Affiliation(s)
- Shima Azimi
- Khaje Nasir Toosi University of Technology Faculty of Civil Engineering, Tehran, Iran
- National Research Council (CNR), Research Institute for Geo-Hydrological Protection, Perugia, Italy
| | - Alireza B. Dariane
- Khaje Nasir Toosi University of Technology Faculty of Civil Engineering, Tehran, Iran
| | - Sara Modanesi
- National Research Council (CNR), Research Institute for Geo-Hydrological Protection, Perugia, Italy
| | | | - Rajat Bindlish
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - Wolfgang Wagner
- Vienna University of Technology (TU Wien), Department of Geodesy and Geoinformation (GEO) Vienna, Austria
| | - Christian Massari
- National Research Council (CNR), Research Institute for Geo-Hydrological Protection, Perugia, Italy
| |
Collapse
|
11
|
Analyzing Space–Time Coherence in Precipitation Seasonality across Different European Climates. REMOTE SENSING 2020. [DOI: 10.3390/rs12010171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Seasonality is a fundamental feature of environmental systems which critically depend on the climate annual cycle. The regularity of the precipitation regime, in particular, is a basic factor to sustain equilibrium conditions. An incomplete or biased understanding of precipitation seasonality, in terms of temporal and spatial properties, could severely limit our ability to respond to climate risk, especially in areas with limited water resources or fragile ecosystems. Here, we analyze precipitation data from the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) at 0.050 resolution to study the spatial features of the precipitation seasonality across different climate zones in Central-Southern Europe during the period 1981–2018. A cluster analysis of the average annual precipitation cycle shows that seasonality under the current climate can be synthesized in the form of a progressive deformation process of the annual cycle, which starts from the northernmost areas with maximum values in summer and ends in the south, where maximum values are recorded in winter. Our analysis is useful to detect local season-dependent changes, enhancing our understanding of the geography of climate change. As an example of application to this issue, we discuss the seasonality analysis in a simulated scenario based on IPCC projections.
Collapse
|
12
|
An Appraisal of Dynamic Bayesian Model Averaging-based Merged Multi-Satellite Precipitation Datasets Over Complex Topography and the Diverse Climate of Pakistan. REMOTE SENSING 2019. [DOI: 10.3390/rs12010010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Merging satellite precipitation products tends to reduce the errors associated with individual satellite precipitation products and has higher potential for hydrological applications. The current study evaluates the performance of merged multi-satellite precipitation dataset (daily temporal and 0.25° spatial resolution) developed using the Dynamic Bayesian Model Averaging algorithm across four different climate regions, i.e., glacial, humid, arid and hyper-arid regions, of Pakistan during 2000–2015. Four extensively evaluated SPPs over Pakistan, i.e., Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42V7, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), Climate Prediction Center MORPHing technique (CMORPH), and Era-Interim, are used to develop the merged multi-satellite precipitation dataset. Six statistical indices, including Mean Bias Error, Mean Absolute Error, Root Mean Square Error, Correlation Coefficient, Kling-Gupta efficiency, and Theil’s U coefficient, are used to evaluate the performance of merged multi-satellite precipitation dataset over 102 ground precipitation gauges both spatially and temporally. Moreover, the ensemble spread score and standard deviation are also used to depict the spread and variation of precipitation of merged multi-satellite precipitation dataset. Skill scores for all statistical indices are also included in the analyses, which shows improvement of merged multi-satellite precipitation dataset against Simple Model Averaging. The results revealed that DBMA-MSPD assigned higher weights to TMPA (0.32) and PERSIANN-CDR (0.27). TMPA presented higher skills in glacial and humid regions with average weights of 0.32 and 0.37 as compared to PERSIANN-CDR of 0.27 and 0.25, respectively. TMPA and Era-Interim depicted higher skills during pre-monsoon and monsoon seasons, with average weights of 0.31 and 0.52 (TMPA) and 0.25 and 0.21 (Era-Interim), respectively. Merged multi-satellite precipitation dataset overestimated precipitation in glacial/humid regions and showed poor performance, with the poorest values of mean absolute error (2.69 mm/day), root mean square error (11.96 mm/day), correlation coefficient (0.41), Kling-Gupta efficiency score (0.33) and Theil’s U (0.70) at some stations in glacial/humid regions. Higher performance is observed in hyper-arid region, with the best values of 0.71 mm/day, 1.72 mm/day, 0.84, 0.93, and 0.37 for mean absolute error, root mean square error, correlation coefficient, Kling-Gupta Efficiency score, and Theil’s U, respectively. Merged multi-Satellite Precipitation Dataset demonstrated significant improvements as compared to TMPA across all climate regions with average improvements of 45.26% (mean bias error), 30.99% (mean absolute error), 30.1% (root mean square error), 11.34% (correlation coefficient), 9.53% (Kling-Gupta efficiency score) and 8.86% (Theil’s U). The ensemble spread and variation of DBMA-MSPD calculated using ensemble spread score and standard deviation demonstrates high spread (11.38 mm/day) and variation (12.58 mm/day) during monsoon season in the humid and glacial regions, respectively. Moreover, the improvements of DBMA-MSPD quantified against fixed weight SMA-MSPD reveals supremacy of DBMA-MSPD, higher improvements (40–50%) in glacial and humid regions.
Collapse
|
13
|
A Prior Estimation of the Spatial Distribution Parameter of Soil Moisture Storage Capacity Using Satellite-Based Root-Zone Soil Moisture Data. REMOTE SENSING 2019. [DOI: 10.3390/rs11212580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Integration of satellite-based data with hydrological modelling was generally conducted via data assimilation or model calibration, and both approaches can enhance streamflow predictions. In this study, we assessed the feasibility of another approach that uses satellite-based soil moisture data to directly estimate the parameter β to represent the degree of the spatial distribution of soil moisture storage capacity in the semi-distributed Hymod model. The impact of using historical root-zone soil moisture data from the Soil Moisture Active Passive (SMAP) mission on the prior estimation of the parameter β was explored. Two different ways to incorporate the root-zone soil moisture data to estimate the parameter β are proposed, i.e., one is to derive a priori distribution of β , and the other is to derive a fixed value for β . The simulations of the Hymod models employing the two ways to estimate β are compared with the results produced by the original model, i.e., the one without employing satellite-based data to estimate the parameter β , at three study catchments (the Upper Hanjiang River catchment, the Xiangjiang River catchment, and the Ganjiang River catchment). The results illustrate that the two ways to incorporate the SMAP root-zone soil moisture data in order to predetermine the parameter β of the semi-distributed Hymod model both perform well in simulating streamflow during the calibration period, and a slight improvement was found during the validation period. Notably, deriving a fixed β value from satellite soil moisture data can provide better performance for ungauged catchments despite reducing the model freedom degrees due to fixing the β value. It is concluded that the robustness of the Hymod model in predicting the streamflow can be improved when the spatial information of satellite-based soil moisture data is utilized to estimate the parameter β .
Collapse
|
14
|
Editorial for the Special Issue “Assimilation of Remote Sensing Data into Earth System Models”. REMOTE SENSING 2019. [DOI: 10.3390/rs11182177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This Special Issue is a collection of papers reporting research on various aspects of coupled data assimilation in Earth system models. It includes contributions presenting recent progress in ocean–atmosphere, land–atmosphere, and soil–vegetation data assimilation.
Collapse
|
15
|
Performance Assessment of SM2RAIN-CCI and SM2RAIN-ASCAT Precipitation Products over Pakistan. REMOTE SENSING 2019. [DOI: 10.3390/rs11172040] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Accurate estimation of precipitation from satellite precipitation products (PPs) over the complex topography and diverse climate of Pakistan with limited rain gauges (RGs) is an arduous task. In the current study, we assessed the performance of two PPs estimated from soil moisture (SM) using the SM2RAIN algorithm, SM2RAIN-CCI and SM2RAIN-ASCAT, on the daily scale across Pakistan during the periods 2000–2015 and 2007–2015, respectively. Several statistical metrics, i.e., Bias, unbiased root mean square error (ubRMSE), Theil’s U, and the modified Kling–Gupta efficiency (KGE) score, and four categorical metrics, i.e., probability of detection (POD), false alarm ratio (FAR), critical success index (CSI), and Bias score, were used to evaluate these two PPs against 102 RGs observations across four distinct climate regions, i.e., glacial, humid, arid and hyper-arid regions. Total mean square error (MSE) is decomposed into systematic (MSEs) and random (MSEr) error components. Moreover, the Tropical Rainfall Measurement Mission Multi-Satellite Precipitation Analysis (TRMM TMPA 3B42v7) was used to assess the performance of SM2RAIN-based products at 0.25° scale during 2007–2015. Results shows that SM2RAIN-based product highly underestimated precipitation in north-east and hydraulically developed areas of the humid region. Maximum underestimation for SM2RAIN-CCI and SM2RIAN-ASCAT were 58.04% and 42.36%, respectively. Precipitation was also underestimated in mountainous areas of glacial and humid regions with maximum underestimations of 43.16% and 34.60% for SM2RAIN-CCI. Precipitation was overestimated along the coast of Arabian Sea in the hyper-arid region with maximum overestimations for SM2RAIN-CCI (SM2RAIN-ASCAT) of 59.59% (52.35%). Higher ubRMSE was observed in the vicinity of hydraulically developed areas. Theil’s U depicted higher accuracy in the arid region with values of 0.23 (SM2RAIN-CCI) and 0.15 (SM2RAIN-ASCAT). Systematic error components have larger contribution than random error components. Overall, SM2RAIN-ASCAT dominates SM2RAIN-CCI across all climate regions, with average percentage improvements in bias (27.01% in humid, 5.94% in arid, and 6.05% in hyper-arid), ubRMSE (19.61% in humid, 20.16% in arid, and 25.56% in hyper-arid), Theil’s U (9.80% in humid, 28.80% in arid, and 26.83% in hyper-arid), MSEs (24.55% in humid, 13.83% in arid, and 8.22% in hyper-arid), MSEr (19.41% in humid, 29.20% in arid, and 24.14% in hyper-arid) and KGE score (5.26% in humid, 28.12% in arid, and 24.72% in hyper-arid). Higher uncertainties were depicted in heavy and intense precipitation seasons, i.e., monsoon and pre-monsoon. Average values of statistical metrics during monsoon season for SM2RAIN-CCI (SM2RAIN-ASCAT) were 20.90% (17.82%), 10.52 mm/day (8.61 mm/day), 0.47 (0.43), and 0.47 (0.55) for bias, ubRMSE, Theil’s U, and KGE score, respectively. TMPA outperformed SM2RAIN-based products across all climate regions. SM2RAIN-based datasets are recommended for agricultural water management, irrigation scheduling, flood simulation and early flood warning system (EFWS), drought monitoring, groundwater modeling, and rainwater harvesting, and vegetation and crop monitoring in plain areas of the arid region.
Collapse
|
16
|
Soil Moisture Monitoring in Iran by Implementing Satellite Data into the Root-Zone SMAR Model. HYDROLOGY 2019. [DOI: 10.3390/hydrology6020044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Monitoring Surface Soil Moisture (SSM) and Root Zone Soil Moisture (RZSM) dynamics at the regional scale is of fundamental importance to many hydrological and ecological studies. This need becomes even more critical in arid and semi-arid regions, where there are a lack of in situ observations. In this regard, satellite-based Soil Moisture (SM) data is promising due to the temporal resolution of acquisitions and the spatial coverage of observations. Satellite-based SM products are only able to estimate moisture from the soil top layer; however, linking SSM with RZSM would provide valuable information on land surface-atmosphere interactions. In the present study, satellite-based SSM data from Soil Moisture and Ocean Salinity (SMOS), Advanced Microwave Scanning Radiometer 2 (AMSR2), and Soil Moisture Active Passive (SMAP) are first compared with the few available SM in situ observations, and are then coupled with the Soil Moisture Analytical Relationship (SMAR) model to estimate RZSM in Iran. The comparison between in situ SM observations and satellite data showed that the SMAP satellite products provide more accurate description of SSM with an average correlation coefficient (R) of 0.55, root-mean-square error (RMSE) of 0.078 m3 m−3 and a Bias of 0.033 m3 m−3. Thereafter, the SMAP satellite products were coupled with SMAR model, providing a description of the RZSM with performances that are strongly influenced by the misalignment between point and pixel processes measured in the preliminary comparison of SSM data.
Collapse
|
17
|
Evaluation of the Performance of SM2RAIN-Derived Rainfall Products over Brazil. REMOTE SENSING 2019. [DOI: 10.3390/rs11091113] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microwave-based satellite soil moisture products enable an innovative way of estimating rainfall using soil moisture observations with a bottom-up approach based on the inversion of the soil water balance Equation (SM2RAIN). In this work, the SM2RAIN-CCI (SM2RAIN-ASCAT) rainfall data obtained from the inversion of the microwave-based satellite soil moisture (SM) observations derived from the European Space Agency (ESA) Climate Change Initiative (CCI) (from the Advanced SCATterometer (ASCAT) soil moisture data) were evaluated against in situ rainfall observations under different bioclimatic conditions in Brazil. The research V7 version of the Tropical Rainfall Measurement Mission Multi-satellite Precipitation Analysis (TRMM TMPA) was also used as a state-of-the-art rainfall product with an up-bottom approach. Comparisons were made at daily and 0.25° scales, during the time-span of 2007–2015. The SM2RAIN-CCI, SM2RAIN-ASCAT, and TRMM TMPA products showed relatively good Pearson correlation values (R) with the gauge-based observations, mainly in the Caatinga (CAAT) and Cerrado (CER) biomes (R median > 0.55). SM2RAIN-ASCAT largely underestimated rainfall across the country, particularly over the CAAT and CER biomes (bias median < −16.05%), while SM2RAIN-CCI is characterized by providing rainfall estimates with only a slight bias (bias median: −0.20%), and TRMM TMPA tended to overestimate the amount of rainfall (bias median: 7.82%). All products exhibited the highest values of unbiased root mean square error (ubRMSE) in winter (DJF) when heavy rainfall events tend to occur more frequently, whereas the lowest values are observed in summer (JJA) with light rainfall events. The SM2RAIN-based products showed larger contribution of systematic error components than random error components, while the opposite was observed for TRMM TMPA. In general, both SM2RAIN-based rainfall products can be effectively used for some operational purposes on a daily scale, such as water resources management and agriculture, whether the bias is previously adjusted.
Collapse
|
18
|
A Comparison of Continuous and Event-Based Rainfall–Runoff (RR) Modelling Using EPA-SWMM. WATER 2019. [DOI: 10.3390/w11030611] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study investigates the comparative performance of event-based and continuous simulation modelling of a stormwater management model (EPA-SWMM) in calculating total runoff hydrographs and direct runoff hydrographs. Myponga upstream and Scott Creek catchments in South Australia were selected as the case study catchments and model performance was assessed using a total of 36 streamflow events from the period of 2001 to 2004. Goodness-of-fit of the EPA-SWMM models developed using automatic calibration were assessed using eight goodness-of-fit measures including Nash–Sutcliff efficiency (NSE), NSE of daily high flows (ANSE), Kling–Gupta efficiency (KGE), etc. The results of this study suggest that event-based modelling of EPA-SWMM outperforms the continuous simulation approach in producing both total runoff hydrograph (TRH) and direct runoff hydrograph (DRH).
Collapse
|
19
|
Predicting Rainfall and Runoff Through Satellite Soil Moisture Data and SWAT Modelling for a Poorly Gauged Basin in Iran. WATER 2019. [DOI: 10.3390/w11030594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydrological models are widely used for many purposes in water sector projects, including streamflow prediction and flood risk assessment. Among the input data used in such hydrological models, the spatial-temporal variability of rainfall datasets has a significant role on the final discharge estimation. Therefore, accurate measurements of rainfall are vital. On the other hand, ground-based measurement networks, mainly in developing countries, are either nonexistent or too sparse to capture rainfall accurately. In addition to in-situ rainfall datasets, satellite-derived rainfall products are currently available globally with high spatial and temporal resolution. An innovative approach called SM2RAIN that estimates rainfall from soil moisture data has been applied successfully to various regions. In this study, first, soil moisture content derived from the Advanced Microwave Scanning Radiometer for the Earth observing system (AMSR-E) is used as input into the SM2RAIN algorithm to estimate daily rainfall (SM2R-AMSRE) at different sites in the Karkheh river basin (KRB), southwest Iran. Second, the SWAT (Soil and Water Assessment Tool) hydrological model was applied to simulate runoff using both ground-based observed rainfall and SM2R-AMSRE rainfall as input. The results reveal that the SM2R-AMSRE rainfall data are, in most cases, in good agreement with ground-based rainfall, with correlations R ranging between 0.58 and 0.88, though there is some underestimation of the observed rainfall due to soil moisture saturation not accounted for in the SM2RAIN equation. The subsequent SWAT-simulated monthly runoff from SM2R-AMSRE rainfall data (SWAT-SM2R-AMSRE) reproduces the observations at the six gauging stations (with coefficient of determination, R² > 0.71 and NSE > 0.56), though with slightly worse performances in terms of bias (Bias) and root-mean-square error (RMSE) and, again, some systematic flow underestimation compared to the SWAT model with ground-based rainfall input. Additionally, rainfall estimates of two satellite products of the Tropical Rainfall Measuring Mission (TRMM), 3B42 and 3B42RT, are used in the calibrated SWAT- model after bias correction. The monthly runoff predictions obtained with 3B42- rainfall have 0.42 < R2 < 0.72 and−0.06 < NSE < 0.74 which are slightly better than those obtained with 3B42RT- rainfall, but not as good as the SWAT-SM2R-AMSRE. Therefore, despite the aforementioned limitations, using SM2R-AMSRE rainfall data in a hydrological model like SWAT appears to be a viable approach in basins with limited ground-based rainfall data.
Collapse
|
20
|
Monitoring and Forecasting the Impact of the 2018 Summer Heatwave on Vegetation. REMOTE SENSING 2019. [DOI: 10.3390/rs11050520] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aims to assess the potential of the LDAS-Monde platform, a land data assimilation system developed by Météo-France, to monitor the impact on vegetation state of the 2018 summer heatwave over Western Europe. The LDAS-Monde is driven by ECMWF’s (i) ERA5 reanalysis, and (ii) the Integrated Forecasting System High Resolution operational analysis (IFS-HRES), used in conjunction with the assimilation of Copernicus Global Land Service (CGLS) satellite-derived products, namely the Surface Soil Moisture (SSM) and the Leaf Area Index (LAI). The study of long time series of satellite derived CGLS LAI (2000–2018) and SSM (2008–2018) highlights marked negative anomalies for July 2018 affecting large areas of northwestern Europe and reflects the impact of the heatwave. Such large anomalies spreading over a large part of the domain of interest have never been observed in the LAI product over this 19-year period. LDAS-Monde land surface reanalyses were produced at spatial resolutions of 0.25° × 0.25° (January 2008 to October 2018) and 0.10° × 0.10° (April 2016 to December 2018). Both configurations of LDAS-Monde forced by either ERA5 or HRES capture well the vegetation state in general and for this specific event, with HRES configuration exhibiting better monitoring skills than ERA5 configuration. The consistency of ERA5- and IFS HRES-driven simulations over the common period (April 2016 to October 2018) allowed to disentangle and appreciate the origin of improvements observed between the ERA5 and HRES. Another experiment, down-scaling ERA5 to HRES spatial resolutions, was performed. Results suggest that land surface spatial resolution is key (e.g., associated to a better representation of the land cover, topography) and using HRES forcing still enhances the skill. While there are advantages in using HRES, there is added value in down-scaling ERA5, which can provide consistent, long term, high resolution land reanalysis. If the improvement from LDAS-Monde analysis on control variables (soil moisture from layers 2 to 8 of the model representing the first meter of soil and LAI) from the assimilation of SSM and LAI was expected, other model variables benefit from the assimilation through biophysical processes and feedback in the model. Finally, we also found added value of initializing 8-day land surface HRES driven forecasts from LDAS-Monde analysis when compared with model-only initial conditions.
Collapse
|
21
|
Khaki M, Hoteit I, Kuhn M, Forootan E, Awange J. Assessing data assimilation frameworks for using multi-mission satellite products in a hydrological context. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:1031-1043. [PMID: 30180311 DOI: 10.1016/j.scitotenv.2018.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
With a growing number of available datasets especially from satellite remote sensing, there is a great opportunity to improve our knowledge of the state of the hydrological processes via data assimilation. Observations can be assimilated into numerical models using dynamics and data-driven approaches. The present study aims to assess these assimilation frameworks for integrating different sets of satellite measurements in a hydrological context. To this end, we implement a traditional data assimilation system based on the Square Root Analysis (SQRA) filtering scheme and the newly developed data-driven Kalman-Takens technique to update the water components of a hydrological model with the Gravity Recovery And Climate Experiment (GRACE) terrestrial water storage (TWS), and soil moisture products from the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) and Soil Moisture and Ocean Salinity (SMOS) in a 5-day temporal scale. While SQRA relies on a physical model for forecasting, the Kalman-Takens only requires a trajectory of the system based on past data. We are particularly interested in testing both methods for assimilating different combination of the satellite data. In most of the cases, simultaneous assimilation of the satellite data by either standard SQRA or Kalman-Takens achieves the largest improvements in the hydrological state, in terms of the agreement with independent in-situ measurements. Furthermore, the Kalman-Takens approach performs comparably well to dynamical method at a fraction of the computational cost.
Collapse
Affiliation(s)
- M Khaki
- School of Earth and Planetary Sciences, Spatial Sciences, Curtin University, Perth, Australia; School of Engineering, University of Newcastle, Callaghan, New South Wales, Australia.
| | - I Hoteit
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - M Kuhn
- School of Earth and Planetary Sciences, Spatial Sciences, Curtin University, Perth, Australia
| | - E Forootan
- School of Earth and Ocean Sciences, Cardiff University, Cardiff, UK
| | - J Awange
- School of Earth and Planetary Sciences, Spatial Sciences, Curtin University, Perth, Australia
| |
Collapse
|
22
|
Defining a Trade-off Between Spatial and Temporal Resolution of a Geosynchronous SAR Mission for Soil Moisture Monitoring. REMOTE SENSING 2018. [DOI: 10.3390/rs10121950] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The next generation of synthetic aperture radar (SAR) systems could foresee satellite missions based on a geosynchronous orbit (GEO SAR). These systems are able to provide radar images with an unprecedented combination of spatial (≤1 km) and temporal (≤12 h) resolutions. This paper investigates the GEO SAR potentialities for soil moisture (SM) mapping finalized to hydrological applications, and defines the best compromise, in terms of image spatio-temporal resolution, for SM monitoring. A synthetic soil moisture–data assimilation (SM-DA) experiment was thus set up to evaluate the impact of the hydrological assimilation of different GEO SAR-like SM products, characterized by diverse spatio-temporal resolutions. The experiment was also designed to understand if GEO SAR-like SM maps could provide an added value with respect to SM products retrieved from SAR images acquired from satellites flying on a quasi-polar orbit, like Sentinel-1 (POLAR SAR). Findings showed that GEO SAR systems provide a valuable contribution for hydrological applications, especially if the possibility to generate many sub-daily observations is sacrificed in favor of higher spatial resolution. In the experiment, it was found that the assimilation of two GEO SAR-like observations a day, with a spatial resolution of 100 m, maximized the performances of the hydrological predictions, for both streamflow and SM state forecasts. Such improvements of the model performances were found to be 45% higher than the ones obtained by assimilating POLAR SAR-like SM maps.
Collapse
|
23
|
Abstract
Satellite remote sensing is a powerful tool to map flooded areas. In recent years, the availability of free satellite data significantly increased in terms of type and frequency, allowing the production of flood maps at low cost around the world. In this work, we propose a semi-automatic method for flood mapping, based only on free satellite images and open-source software. The proposed methods are suitable to be applied by the community involved in flood hazard management, not necessarily experts in remote sensing processing. As case studies, we selected three flood events that recently occurred in Spain and Italy. Multispectral satellite data acquired by MODIS, Proba-V, Landsat, and Sentinel-2 and synthetic aperture radar (SAR) data collected by Sentinel-1 were used to detect flooded areas using different methodologies (e.g., Modified Normalized Difference Water Index, SAR backscattering variation, and supervised classification). Then, we improved and manually refined the automatic mapping using free ancillary data such as the digital elevation model-based water depth model and available ground truth data. We calculated flood detection performance (flood ratio) for the different datasets by comparing with flood maps made by official river authorities. The results show that it is necessary to consider different factors when selecting the best satellite data. Among these factors, the time of the satellite pass with respect to the flood peak is the most important. With co-flood multispectral images, more than 90% of the flooded area was detected in the 2015 Ebro flood (Spain) case study. With post-flood multispectral data, the flood ratio showed values under 50% a few weeks after the 2016 flood in Po and Tanaro plains (Italy), but it remained useful to map the inundated pattern. The SAR could detect flooding only at the co-flood stage, and the flood ratio showed values below 5% only a few days after the 2016 Po River inundation. Another result of the research was the creation of geomorphology-based inundation maps that matched up to 95% with official flood maps.
Collapse
|
24
|
Assessment of SM2RAIN-Derived and State-of-the-Art Satellite Rainfall Products over Northeastern Brazil. REMOTE SENSING 2018. [DOI: 10.3390/rs10071093] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Hydrologic Evaluation of Multi-Source Satellite Precipitation Products for the Upper Huaihe River Basin, China. REMOTE SENSING 2018. [DOI: 10.3390/rs10060840] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|