1
|
High-Resolution Wide-Swath Ambiguous Synthetic Aperture Radar Modes for Ship Monitoring. REMOTE SENSING 2022. [DOI: 10.3390/rs14133102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This paper proposes two high-resolution, wide-swath synthetic aperture radar (SAR) acquisition modes for ship monitoring that tolerate ambiguities and do not require digital beamforming. Both modes, referred to as the low pulse repetition frequency (PRF) and the staggered (high PRF) ambiguous modes, make use of a wide elevation beam, which can be obtained by phase tapering. The first mode is a conventional stripmap mode with a PRF much lower than the nominal Doppler bandwidth, allowing for the imaging of a large swath, because the ships’ azimuth ambiguities can be recognized as they appear at known positions. The second mode exploits a continuous variation of the pulse repetition interval, with a mean PRF greater than the nominal Doppler bandwidth as the range ambiguities of the ships are smeared and are unlikely to determine false alarms. Both modes are thought to operate in open sea surveillance, monitoring Exclusive Economic Zones or international waters. Examples of implementation of both modes for TerraSAR-X show that ground swaths of 120 km or 240 km can be mapped with 2 m2 resolution, ensuring outstanding detection performance even for small ships. The importance of resolution over noise and ambiguity level was highlighted by a comparison with ScanSAR modes that image comparable swaths with better noise and ambiguity levels but coarser resolutions.
Collapse
|
2
|
A New Orbiting Deployable System for Small Satellite Observations for Ecology and Earth Observation. REMOTE SENSING 2022. [DOI: 10.3390/rs14092066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this paper, we present several study cases focused on marine, oceanographic, and atmospheric environments, which would greatly benefit from the use of a deployable system for small satellite observations. As opposed to the large standard ones, small satellites have become an effective and affordable alternative access to space, owing to their lower costs, innovative design and technology, and higher revisiting times, when launched in a constellation configuration. One of the biggest challenges is created by the small satellite instrumentation working in the visible (VIS), infrared (IR), and microwave (MW) spectral ranges, for which the resolution of the acquired data depends on the physical dimension of the telescope and the antenna collecting the signal. In this respect, a deployable payload, fitting the limited size and mass imposed by the small satellite architecture, once unfolded in space, can reach performances similar to those of larger satellites. In this study, we show how ecology and Earth Observations can benefit from data acquired by small satellites, and how they can be further improved thanks to deployable payloads. We focus on DORA—Deployable Optics for Remote sensing Applications—in the VIS to TIR spectral range, and on a planned application in the MW spectral range, and we carry out a radiometric analysis to verify its performances for Earth Observation studies.
Collapse
|
3
|
Small-Satellite Synthetic Aperture Radar for Continuous Global Biospheric Monitoring: A Review. REMOTE SENSING 2020. [DOI: 10.3390/rs12162546] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Space-based radar sensors have transformed Earth observation since their first use by Seasat in 1978. Radar instruments are less affected by daylight or weather conditions than optical counterparts, suitable for continually monitoring the global biosphere. The current trends in synthetic aperture radar (SAR) platform design are distinct from traditional approaches in that miniaturized satellites carrying SAR are launched in multiples to form a SAR constellation. A systems engineering perspective is presented in this paper to track the transitioning of space-based SAR platforms from large satellites to small satellites. Technological advances therein are analyzed in terms of subsystem components, standalone satellites, and satellite constellations. The availability of commercial satellite constellations, ground stations, and launch services together enable real-time SAR observations with unprecedented details, which will help reveal the global biomass and their changes owing to anthropogenic drivers. The possible roles of small satellites in global biospheric monitoring and the subsequent research areas are also discussed.
Collapse
|
4
|
Abstract
Images acquired by synthetic aperture radars are degraded by speckle that prevents efficient extraction of useful information from radar remote sensing data. Filtering or despeckling is a tool often used to improve image quality. However, depending upon image and noise properties, the quality of improvement can vary. Besides, a quality can be characterized by different criteria or metrics, where visual quality metrics can be of value. For the case study of discrete cosine transform (DCT)based filtering, we show that improvement of radar image quality due to denoising can be predicted in a simple and fast way, especially if one deals with particular type of radar data such as images acquired by Sentinel-1. Our approach is based on application of a trained neural network that, in general, might have a different number of inputs (features). We propose a set of features describing image and noise statistics from different viewpoints. From this set, that contains 28 features, we analyze different subsets and show that a subset of the 13 most important and informative features leads to a very accurate prediction. Test image generation and network training peculiarities are discussed. The trained neural network is then tested using different verification strategies. The results of the network application to test and real-life radar images are presented, demonstrating good performance for a wide set of quality metrics.
Collapse
|
5
|
Abstract
This special issue is a collection of papers addressing the scientific utilization of data acquired in the course of the TerraSAR-X mission. The articles deal with the mission itself, the accuracy of the products, with differential interferometry, and with applications in the domains cryosphere, oceans, wetlands, and urban areas. This editorial summarizes the content.
Collapse
|