1
|
Yu D, Li Y, Yin B, Wu N, Ye R, Liu G. Spatiotemporal variation of net primary productivity and its response to drought in Inner Mongolian desert steppe. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2021.e01991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
2
|
Wildfires on the Mongolian Plateau: Identifying Drivers and Spatial Distributions to Predict Wildfire Probability. REMOTE SENSING 2019. [DOI: 10.3390/rs11202361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With climate change, significant fluctuations in wildfires have been observed on the Mongolian Plateau. The ability to predict the distribution of wildfires in the context of climate change plays a critical role in wildfire management and ecosystem maintenance. In this paper, Ripley’s K function and a Random Forest (RF) model were applied to analyse the spatial patterns and main influencing factors affecting the occurrence of wildfire on the Mongolian Plateau. The results showed that the wildfires were mainly clustered in space due to the combination of influencing factors. The distance scale is less than 1/2 of the length of the Mongolian Plateau; that is, it does not experience boundary effects in the study area and it meets the requirements of Ripley’s K function. Among the driving factors, the fraction of vegetation coverage (FVC), land use degree (La), elevation, precipitation (pre), wet day frequency (wet), and maximum temperature (tmx) had the greatest influences, while the aspect had the lowest influence. The likelihood of fire was mainly concentrated in the northern, eastern, and southern parts of the Mongolian Plateau and in the border area between the Inner Mongolia Autonomous Region (Inner Mongolia) and Mongolian People’s Republic (Mongolia), and wildfires did not occur or occurred less frequently in the hinterland area. The fitting results of the RF model showed a prediction accuracy exceeding 90%, which indicates that the model has a high ability to predict wildfire occurrences on the Mongolian Plateau. This study can provide a reference for predictions and decision-making related to wildfires on the Mongolian Plateau.
Collapse
|
3
|
Asymmetric Effects of Daytime and Nighttime Warming on Boreal Forest Spring Phenology. REMOTE SENSING 2019. [DOI: 10.3390/rs11141651] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Vegetation phenology is the most intuitive and sensitive biological indicator of environmental conditions, and the start of the season (SOS) can reflect the rapid response of terrestrial ecosystems to climate change. At present, the model based on mean temperature neglects the role of the daytime maximum temperature (TMAX) and the nighttime minimum temperature (TMIN) in providing temperature accumulation and cold conditions at leaf onset. This study analyzed the spatiotemporal variations of spring phenology for the boreal forest from 2001 to 2017 based on the moderate-resolution imaging spectro-radiometer (MODIS) enhanced vegetation index (EVI) data (MOD13A2) and investigated the asymmetric effects of daytime and nighttime warming on the boreal forest spring phenology during TMAX and TMIN preseason by partial correlation analysis. The results showed that the spring phenology was delayed with increasing latitude of the boreal forest. Approximately 91.37% of the region showed an advancing trend during the study period, with an average advancement rate of 3.38 ± 0.08 days/decade, and the change rates of different land cover types differed, especially in open shrubland. The length of the TMIN preseason was longer than that of the TMAX preseason and diurnal temperatures showed an asymmetrical increase during different preseasons. The daytime and nighttime warming effects on the boreal forest are asymmetrical. The TMAX has a greater impact on the vegetation spring phenology than TMIN as a whole and the effect also has seasonal differences; the TMAX mainly affects the SOS in spring, while TMIN has a greater impact in winter. The asymmetric effects of daytime and nighttime warming on the SOS in the boreal forest were highlighted in this study, and the results suggest that diurnal temperatures should be added to the forest terrestrial ecosystem model.
Collapse
|