1
|
Influence of Indian Summer Monsoon on Tropopause, Trace Gases and Aerosols in Asian Summer Monsoon Anticyclone Observed by COSMIC, MLS and CALIPSO. REMOTE SENSING 2021. [DOI: 10.3390/rs13173486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The existence of the Asian Summer Monsoon Anticyclone (ASMA) during the summer in the northern hemisphere, upper troposphere and lower stratosphere (UTLS) region plays a significant role in confining the trace gases and aerosols for a long duration, thus affecting regional and global climate. Though several studies have been carried out, our understanding of the trace gases and aerosols variability in the ASMA is limited during different phases of the Indian monsoon. This work quantifies the role of Indian Summer Monsoon (ISM) activity on the tropopause, trace gases (Water Vapor (WV), Ozone (O3), Carbon Monoxide (CO)) and aerosols (Attenuated Scattering Ratio (ASR)) obtained from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC), Microwave Limb Sounder (MLS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite observations, respectively, during the period 2006–2016. Enhancement in the tropopause altitude, WV, CO, ASR and low tropopause temperatures, O3 in the ASMA region is clearly noticed during peak monsoon months (July and August) with large inter-annual variability. Further, a significant increase in the WV and CO, and decrease in O3 during the active phase of the ISM, strong monsoon years and strong La Niña years in the ASMA is noticed. An enhancement in the ASR values during the strong monsoon years and strong La Niña years is also observed. In addition, our results showed that the presence of deep convection spreading from India land regions to the Bay of Bengal with strong updrafts can transport the trace gases and aerosols to the upper troposphere during active spells, strong monsoon years and La Niña years when compared to their counterparts. Observations show that the ASMA is very sensitive to active spells, strong monsoon years and La Niña years compared to break spells, weak monsoon years and El Niño years. It is concluded that the dynamics play a significant role in constraining several trace gases and aerosols in the ASMA and suggested considering the activity of the summer monsoon while dealing with them at sub-seasonal scales.
Collapse
|
2
|
Spatio–temporal Assessment of Drought in Ethiopia and the Impact of Recent Intense Droughts. REMOTE SENSING 2019. [DOI: 10.3390/rs11151828] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The recent droughts that have occurred in different parts of Ethiopia are generally linked to fluctuations in atmospheric and ocean circulations. Understanding these large-scale phenomena that play a crucial role in vegetation productivity in Ethiopia is important. In view of this, several techniques and datasets were analyzed to study the spatio–temporal variability of vegetation in response to a changing climate. In this study, 18 years (2001–2018) of Moderate Resolution Imaging Spectroscopy (MODIS) Terra/Aqua, normalized difference vegetation index (NDVI), land surface temperature (LST), Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) daily precipitation, and the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS) soil moisture datasets were processed. Pixel-based Mann–Kendall trend analysis and the Vegetation Condition Index (VCI) were used to assess the drought patterns during the cropping season. Results indicate that the central highlands and northwestern part of Ethiopia, which have land cover dominated by cropland, had experienced decreasing precipitation and NDVI trends. About 52.8% of the pixels showed a decreasing precipitation trend, of which the significant decreasing trends focused on the central and low land areas. Also, 41.67% of the pixels showed a decreasing NDVI trend, especially in major parts of the northwestern region of Ethiopia. Based on the trend test and VCI analysis, significant countrywide droughts occurred during the El Niño 2009 and 2015 years. Furthermore, the Pearson correlation coefficient analysis assures that the low NDVI was mainly attributed to the low precipitation and water availability in the soils. This study provides valuable information in identifying the locations with the potential concern of drought and planning for immediate action of relief measures. Furthermore, this paper presents the results of the first attempt to apply a recently developed index, the Normalized Difference Latent Heat Index (NDLI), to monitor drought conditions. The results show that the NDLI has a high correlation with NDVI (r = 0.96), precipitation (r = 0.81), soil moisture (r = 0.73), and LST (r = −0.67). NDLI successfully captures the historical droughts and shows a notable correlation with the climatic variables. The analysis shows that using the radiances of green, red, and short wave infrared (SWIR), a simplified crop monitoring model with satisfactory accuracy and easiness can be developed.
Collapse
|