1
|
Zhao T, Wang S, Ouyang C, Chen M, Liu C, Zhang J, Yu L, Wang F, Xie Y, Li J, Wang F, Grunwald S, Wong BM, Zhang F, Qian Z, Xu Y, Yu C, Han W, Sun T, Shao Z, Qian T, Chen Z, Zeng J, Zhang H, Letu H, Zhang B, Wang L, Luo L, Shi C, Su H, Zhang H, Yin S, Huang N, Zhao W, Li N, Zheng C, Zhou Y, Huang C, Feng D, Xu Q, Wu Y, Hong D, Wang Z, Lin Y, Zhang T, Kumar P, Plaza A, Chanussot J, Zhang J, Shi J, Wang L. Artificial intelligence for geoscience: Progress, challenges, and perspectives. Innovation (N Y) 2024; 5:100691. [PMID: 39285902 PMCID: PMC11404188 DOI: 10.1016/j.xinn.2024.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/17/2024] [Indexed: 09/19/2024] Open
Abstract
This paper explores the evolution of geoscientific inquiry, tracing the progression from traditional physics-based models to modern data-driven approaches facilitated by significant advancements in artificial intelligence (AI) and data collection techniques. Traditional models, which are grounded in physical and numerical frameworks, provide robust explanations by explicitly reconstructing underlying physical processes. However, their limitations in comprehensively capturing Earth's complexities and uncertainties pose challenges in optimization and real-world applicability. In contrast, contemporary data-driven models, particularly those utilizing machine learning (ML) and deep learning (DL), leverage extensive geoscience data to glean insights without requiring exhaustive theoretical knowledge. ML techniques have shown promise in addressing Earth science-related questions. Nevertheless, challenges such as data scarcity, computational demands, data privacy concerns, and the "black-box" nature of AI models hinder their seamless integration into geoscience. The integration of physics-based and data-driven methodologies into hybrid models presents an alternative paradigm. These models, which incorporate domain knowledge to guide AI methodologies, demonstrate enhanced efficiency and performance with reduced training data requirements. This review provides a comprehensive overview of geoscientific research paradigms, emphasizing untapped opportunities at the intersection of advanced AI techniques and geoscience. It examines major methodologies, showcases advances in large-scale models, and discusses the challenges and prospects that will shape the future landscape of AI in geoscience. The paper outlines a dynamic field ripe with possibilities, poised to unlock new understandings of Earth's complexities and further advance geoscience exploration.
Collapse
Affiliation(s)
- Tianjie Zhao
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Sheng Wang
- School of Computer Science, China University of Geosciences, Wuhan 430078, China
| | - Chaojun Ouyang
- State Key Laboratory of Mountain Hazards and Engineering Resilience, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Chen
- Key Laboratory of Virtual Geographic Environment (Ministry of Education of PRC), Nanjing Normal University, Nanjing 210023, China
| | - Chenying Liu
- Data Science in Earth Observation, Technical University of Munich, 80333 Munich, Germany
| | - Jin Zhang
- The National Key Laboratory of Water Disaster Prevention, Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China
| | - Long Yu
- School of Computer Science, China University of Geosciences, Wuhan 430078, China
| | - Fei Wang
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Xie
- School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jun Li
- School of Computer Science, China University of Geosciences, Wuhan 430078, China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemistry, Technical University of Munich, 85748 Munich, Germany
| | - Sabine Grunwald
- Soil, Water and Ecosystem Sciences Department, University of Florida, PO Box 110290, Gainesville, FL, USA
| | - Bryan M Wong
- Materials Science Engineering Program Cooperating Faculty Member in the Department of Chemistry and Department of Physics Astronomy, University of California, California, Riverside, CA 92521, USA
| | - Fan Zhang
- Institute of Remote Sensing and Geographical Information System, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Zhen Qian
- Key Laboratory of Virtual Geographic Environment (Ministry of Education of PRC), Nanjing Normal University, Nanjing 210023, China
| | - Yongjun Xu
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengqing Yu
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Han
- School of Computer Science, China University of Geosciences, Wuhan 430078, China
| | - Tao Sun
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Zezhi Shao
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tangwen Qian
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Chen
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiangyuan Zeng
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Huai Zhang
- Key Laboratory of Computational Geodynamics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Husi Letu
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Bing Zhang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Li Wang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Lei Luo
- International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
| | - Chong Shi
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Hongjun Su
- College of Geography and Remote Sensing, Hohai University, Nanjing 211100, China
| | - Hongsheng Zhang
- Department of Geography, The University of Hong Kong, Hong Kong 999077, SAR, China
| | - Shuai Yin
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Ni Huang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Wei Zhao
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Nan Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing 210044, China
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chaolei Zheng
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Yang Zhou
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Changping Huang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Defeng Feng
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingsong Xu
- Data Science in Earth Observation, Technical University of Munich, 80333 Munich, Germany
| | - Yan Wu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danfeng Hong
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenyu Wang
- Department of Catchment Hydrology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale) 06108, Germany
| | - Yinyi Lin
- Department of Geography, The University of Hong Kong, Hong Kong 999077, SAR, China
| | - Tangtang Zhang
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
- Institute for Sustainability, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Antonio Plaza
- Hyperspectral Computing Laboratory, University of Extremadura, 10003 Caceres, Spain
| | - Jocelyn Chanussot
- University Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiancheng Shi
- National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Lizhe Wang
- School of Computer Science, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
5
|
Impact of Image-Processing Routines on Mapping Glacier Surface Facies from Svalbard and the Himalayas Using Pixel-Based Methods. REMOTE SENSING 2022. [DOI: 10.3390/rs14061414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glacier surface facies are valuable indicators of changes experienced by a glacial system. The interplay of accumulation and ablation facies, followed by intermixing with dust and debris, as well as the local climate, all induce observable and mappable changes on the supraglacial terrain. In the absence or lag of continuous field monitoring, remote sensing observations become vital for maintaining a constant supply of measurable data. However, remote satellite observations suffer from atmospheric effects, resolution disparity, and use of a multitude of mapping methods. Efficient image-processing routines are, hence, necessary to prepare and test the derivable data for mapping applications. The existing literature provides an application-centric view for selection of image processing schemes. This can create confusion, as it is not clear which method of atmospheric correction would be ideal for retrieving facies spectral reflectance, nor are the effects of pansharpening examined on facies. Moreover, with a variety of supervised classifiers and target detection methods now available, it is prudent to test the impact of variations in processing schemes on the resultant thematic classifications. In this context, the current study set its experimental goals. Using very-high-resolution (VHR) WorldView-2 data, we aimed to test the effects of three common atmospheric correction methods, viz. Dark Object Subtraction (DOS), Quick Atmospheric Correction (QUAC), and Fast Line-of-Sight Atmospheric Analysis of Hypercubes (FLAASH); and two pansharpening methods, viz. Gram–Schmidt (GS) and Hyperspherical Color Sharpening (HCS), on thematic classification of facies using 12 supervised classifiers. The conventional classifiers included: Mahalanobis Distance (MHD), Maximum Likelihood (MXL), Minimum Distance to Mean (MD), Spectral Angle Mapper (SAM), and Winner Takes All (WTA). The advanced/target detection classifiers consisted of: Adaptive Coherence Estimator (ACE), Constrained Energy Minimization (CEM), Matched Filtering (MF), Mixture-Tuned Matched Filtering (MTMF), Mixture-Tuned Target-Constrained Interference-Minimized Filter (MTTCIMF), Orthogonal Space Projection (OSP), and Target-Constrained Interference-Minimized Filter (TCIMF). This experiment was performed on glaciers at two test sites, Ny-Ålesund, Svalbard, Norway; and Chandra–Bhaga basin, Himalaya, India. The overall performance suggested that the FLAASH correction delivered realistic reflectance spectra, while DOS delivered the least realistic. Spectra derived from HCS sharpened subsets seemed to match the average reflectance trends, whereas GS reduced the overall reflectance. WTA classification of the DOS subsets achieved the highest overall accuracy (0.81). MTTCIMF classification of the FLAASH subsets yielded the lowest overall accuracy of 0.01. However, FLAASH consistently provided better performance (less variable and generally accurate) than DOS and QUAC, making it the more reliable and hence recommended algorithm. While HCS-pansharpened classification achieved a lower error rate (0.71) in comparison to GS pansharpening (0.76), neither significantly improved accuracy nor efficiency. The Ny-Ålesund glacier facies were best classified using MXL (error rate = 0.49) and WTA classifiers (error rate = 0.53), whereas the Himalayan glacier facies were best classified using MD (error rate = 0.61) and WTA (error rate = 0.45). The final comparative analysis of classifiers based on the total error rate across all atmospheric corrections and pansharpening methods yielded the following reliability order: MXL > WTA > MHD > ACE > MD > CEM = MF > SAM > MTMF = TCIMF > OSP > MTTCIMF. The findings of the current study suggested that for VHR visible near-infrared (VNIR) mapping of facies, FLAASH was the best atmospheric correction, while MXL may deliver reliable thematic classification. Moreover, an extensive account of the varying exertions of each processing scheme is discussed, and could be transferable when compared against other VHR VNIR mapping methods.
Collapse
|
9
|
Abstract
Timely monitoring of the changes in coverage and growth conditions of vegetation (forest, grass) is very important for preserving the regional and global ecological environment. Vegetation information is mainly reflected by its spectral characteristics, namely, differences and changes in green plant leaves and vegetation canopies in remote sensing domains. The normalized difference vegetation index (NDVI) is commonly used to describe the dynamic changes in vegetation, but the NDVI sequence is not long enough to support the exploration of dynamic changes due to many reasons, such as changes in remote sensing sensors. Thus, the NDVI from different sensors should be scientifically combined using logical methods. In this study, the Global Inventory Modeling and Mapping Studies (GIMMS) NDVI from the Advanced Very High Resolution Radiometer (AVHRR) and Moderate-resolution Imaging Spectroradiometer (MODIS) NDVI are combined using the Savitzky–Golay (SG) method and then utilized to investigate the temporal and spatial changes in the vegetation of the Ruoergai wetland area (RWA). The dynamic spatial and temporal changes and trends of the NDVI sequence in the RWA are analyzed to evaluate and monitor the growth conditions of vegetation in this region. In regard to annual changes, the average annual NDVI shows an overall increasing trend in this region during the past three decades, with a linear trend coefficient of 0.013/10a, indicating that the vegetation coverage has been continuously improving. In regard to seasonal changes, the linear trend coefficients of NDVI are 0.020, 0.021, 0.004, and 0.004/10a for spring, summer, autumn, and winter, respectively. The linear regression coefficient between the gross domestic product (GDP) and NDVI is also calculated, and the coefficients are 0.0024, 0.0015, and 0.0020, with coefficients of determination (R2) of 0.453, 0.463, and 0.444 for Aba, Ruoergai, and Hongyuan, respectively. Thus, the positive correlation coefficients between the GDP and the growth of NDVI may indicate that increased societal development promotes vegetation in some respects by resulting in the planting of more trees or the promotion of tree protection activities. Through the analysis of the temporal and spatial NDVI, it can be assessed that the vegetation coverage is relatively large and the growth condition of vegetation in this region is good overall.
Collapse
|