1
|
Remote Sensing, Geophysics, and Modeling to Support Precision Agriculture—Part 2: Irrigation Management. WATER 2022. [DOI: 10.3390/w14071157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Food and water security are considered the most critical issues globally due to the projected population growth placing pressure on agricultural systems. Because agricultural activity is known to be the largest consumer of freshwater, the unsustainable irrigation water use required by crops to grow might lead to rapid freshwater depletion. Precision agriculture has emerged as a feasible concept to maintain farm productivity while facing future problems such as climate change, freshwater depletion, and environmental degradation. Agriculture is regarded as a complex system due to the variability of soil, crops, topography, and climate, and its interconnection with water availability and scarcity. Therefore, understanding these variables’ spatial and temporal behavior is essential in order to support precision agriculture by implementing optimum irrigation water use. Nowadays, numerous cost- and time-effective methods have been highlighted and implemented in order to optimize on-farm productivity without threatening the quantity and quality of the environmental resources. Remote sensing can provide lateral distribution information for areas of interest from the regional scale to the farm scale, while geophysics can investigate non-invasively the sub-surface soil (vertically and laterally), mapping large spatial and temporal domains. Likewise, agro-hydrological modelling can overcome the insufficient on-farm physicochemical dataset which is spatially and temporally required for precision agriculture in the context of irrigation water scheduling.
Collapse
|
2
|
Estimation of Seasonal Evapotranspiration for Crops in Arid Regions Using Multisource Remote Sensing Images. REMOTE SENSING 2020. [DOI: 10.3390/rs12152398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An accurate estimation of evapotranspiration (ET) from crops is crucial in irrigation management, crop yield assessment, and optimal allocation of water resources, particularly in arid regions. This study explores the estimation of seasonal evapotranspiration for crops using multisource remote sensing images. The proposed estimation framework starts with estimating daily evapotranspiration (ETd) values, which are then used to calculate ET estimates during the crop growing season (ETs). We incorporated Landsat images into the surface energy balance algorithm over land (SEBAL) model, and we used the trapezoidal and sinusoidal methods to estimate the seasonal ET. The trapezoidal method used multitemporal ETd images, while the sinusoidal method employs time-series Moderate Resolution Imaging Spectroradiometer (MODIS) images and multitemporal ETd images. Experiments were implemented in the agricultural lands of the Kai-Kong River Basin, Xinjiang, China. The experimental results show that the obtained ETd estimates using the SEBAL model are comparable with those from the Penman–Monteith method. The ETs obtained using the trapezoidal and sinusoidal methods both have a relatively high spatial resolution of 30 m. The sinusoidal method performs better than the trapezoidal method when using low temporal resolution Landsat images. We observed that the omission of Landsat images during the middle stage of crop growth has the greatest impact on the estimation results of ETs using the sinusoidal method. Based on the results of the study, we conclude that the proposed sinusoidal method, with integrated multisource remote sensing images, offers a useful tool in estimating seasonal evapotranspiration for crops in arid regions.
Collapse
|
3
|
Long-Term Land Use/Land Cover Change Assessment of the Kilombero Catchment in Tanzania Using Random Forest Classification and Robust Change Vector Analysis. REMOTE SENSING 2020. [DOI: 10.3390/rs12071057] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Information about land use/land cover (LULC) and their changes is useful for different stakeholders to assess future pathways of sustainable land use for food production as well as for nature conservation. In this study, we assess LULC changes in the Kilombero catchment in Tanzania, an important area of recent development in East Africa. LULC change is assessed in two ways: first, post-classification comparison (PCC) which allows us to directly assess changes from one LULC class to another, and second, spectral change detection. We perform LULC classification by applying random forests (RF) on sets of multitemporal metrics that account for seasonal within-class dynamics. For the spectral change detection, we make use of the robust change vector analysis (RCVA) and determine those changes that do not necessarily lead to another class. The combination of the two approaches enables us to distinguish areas that show (a) only PCC changes, (b) only spectral changes that do not affect the classification of a pixel, (c) both types of change, or (d) no changes at all. Our results reveal that only one-quarter of the catchment has not experienced any change. One-third shows both, spectral changes and LULC conversion. Changes detected with both methods predominantly occur in two major regions, one in the West of the catchment, one in the Kilombero floodplain. Both regions are important areas of food production and economic development in Tanzania. The Kilombero floodplain is a Ramsar protected area, half of which was converted to agricultural land in the past decades. Therefore, LULC monitoring is required to support sustainable land management. Relatively poor classification performances revealed several challenges during the classification process. The combined approach of PCC and RCVA allows us to detect spatial patterns of LULC change at distinct dimensions and intensities. With the assessment of additional classifier output, namely class-specific per-pixel classification probabilities and derived parameters, we account for classification uncertainty across space. We overlay the LULC change results and the spatial assessment of classification reliability to provide a thorough picture of the LULC changes taking place in the Kilombero catchment.
Collapse
|
4
|
Evaluating the Temperature Difference Parameter in the SSEBop Model with Satellite-Observed Land Surface Temperature Data. REMOTE SENSING 2019. [DOI: 10.3390/rs11161947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Operational Simplified Surface Energy Balance (SSEBop) model uses the principle of satellite psychrometry to produce spatially explicit actual evapotranspiration (ETa) with remotely sensed and weather data. The temperature difference (dT) in the model is a predefined parameter quantifying the difference between surface temperature at bare soil and air temperature at canopy level. Because dT is derived from the average-sky net radiation based primarily on climate data, validation of the dT estimation is critical for assuring a high-quality ETa product. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) data to evaluate the SSEBop dT estimation for the conterminous United States. MODIS data (2008–2017) were processed to compute the 10-year average land surface temperature (LST) and normalized difference vegetation index (NDVI) at 1 km resolution and 8-day interval. The observed dT (dTo) was computed from the LST difference between hot (NDVI < 0.25) and cold (NDVI > 0.7) pixels within each 2° × 2° sampling block. There were enough hot and cold pixels within each block to create dTo timeseries in the West Coast and South-Central regions. The comparison of dTo and modeled dT (dTm) showed high agreement, with a bias of 0.8 K and a correlation coefficient of 0.88 on average. This study concludes that the dTm estimation from the SSEBop model is reliable, which further assures the accuracy of the ETa estimation.
Collapse
|