1
|
Ali S, Ran J, Luan Y, Khorrami B, Xiao Y, Tangdamrongsub N. The GWR model-based regional downscaling of GRACE/GRACE-FO derived groundwater storage to investigate local-scale variations in the North China Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168239. [PMID: 37931810 DOI: 10.1016/j.scitotenv.2023.168239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/30/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
Groundwater storage and depletion fluctuations in response to groundwater availability for irrigation require understanding on a local scale to ensure a reliable groundwater supply. However, the coarser spatial resolution and intermittent data gaps to estimate the regional groundwater storage anomalies (GWSA) prevent the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GARCE-FO) mission from being applied at the local scale. To enhance the resolution of GWSA measurements using machine learning approaches, numerous recent efforts have been made. With a focus on the development of a new algorithm, this study enhanced the GWSA resolution estimates to 0.05° by extensively investigating the continuous spatiotemporal variations of GWSA based on the regional downscaling approach using a regression algorithm known as the geographically weighted regression model (GWR). First, the modified seasonal decomposition LOESS method (STL) was used to estimate the continuous terrestrial water storage anomaly (TWSA). Secondly, to separate GWSA from TWSA, a water balance equation was used. Third, the continuous GWSA was downscaled to 0.05° based on the GWR model. Finally, spatio-temporal properties of downscaled GWSA were investigated in the North China Plain (NCP), China's fastest-urbanizing area, from 2003 to 2022. The results of the downscaled GWSA were spatially compatible with GRACE-derived GWSA. The downscaled GWSA results are validated (R = 0.83) using in-situ groundwater level data. The total loss of GWSA in cities of the NCP fluctuated between 2003 and 2022, with the largest loss seen in Handan (-15.21 ± 7.25 mm/yr), Xingtai (-14.98 ± 7.25 mm/yr), and Shijiazhuang (-14.58 ± 7.25 mm/yr). The irrigated winter-wheat farming strategy is linked to greater groundwater depletion in several cities of NCP (e.g., Xingtai, Handan, Anyang, Hebi, Puyang, and Xinxiang). The study's high-resolution findings can help with understanding local groundwater depletion that takes agricultural water utilization and provide quantitative data for water management.
Collapse
Affiliation(s)
- Shoaib Ali
- Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen 518005, China.
| | - Jiangjun Ran
- Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen 518005, China.
| | - Yi Luan
- Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen 518005, China.
| | - Behnam Khorrami
- Department of GIS, The Graduate School of Natural and Applied Sciences, Dokuz Eylul University, Izmir, Türkiye.
| | - Yun Xiao
- Xi'an Research Institute of Surveying and Mapping, Xi'an, China
| | - Natthachet Tangdamrongsub
- Water Engineering and Management, School of Engineering and Technology, Asian Institute of Technology, Pathum Thani 12120, Thailand.
| |
Collapse
|
2
|
White AM, Gardner WP, Borsa AA, Argus DF, Martens HR. A Review of GNSS/GPS in Hydrogeodesy: Hydrologic Loading Applications and Their Implications for Water Resource Research. WATER RESOURCES RESEARCH 2022; 58:e2022WR032078. [PMID: 36247691 PMCID: PMC9541658 DOI: 10.1029/2022wr032078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 06/16/2023]
Abstract
Hydrogeodesy, a relatively new field within the earth sciences, is the analysis of the distribution and movement of terrestrial water at Earth's surface using measurements of Earth's shape, orientation, and gravitational field. In this paper, we review the current state of hydrogeodesy with a specific focus on Global Navigation Satellite System (GNSS)/Global Positioning System measurements of hydrologic loading. As water cycles through the hydrosphere, GNSS stations anchored to Earth's crust measure the associated movement of the land surface under the weight of changing hydrologic loads. Recent advances in GNSS-based hydrogeodesy have led to exciting applications of hydrologic loading and subsequent terrestrial water storage (TWS) estimates. We describe how GNSS position time series respond to climatic drivers, can be used to estimate TWS across temporal scales, and can improve drought characterization. We aim to facilitate hydrologists' use of GNSS-observed surface deformation as an emerging tool for investigating and quantifying water resources, propose methods to further strengthen collaborative research and exchange between geodesists and hydrologists, and offer ideas about pressing questions in hydrology that GNSS may help to answer.
Collapse
Affiliation(s)
| | | | - Adrian A. Borsa
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCAUSA
| | - Donald F. Argus
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | | |
Collapse
|
3
|
Carlson G, Werth S, Shirzaei M. Joint Inversion of GNSS and GRACE for Terrestrial Water Storage Change in California. JOURNAL OF GEOPHYSICAL RESEARCH. SOLID EARTH 2022; 127:e2021JB023135. [PMID: 35866034 PMCID: PMC9287077 DOI: 10.1029/2021jb023135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 05/25/2023]
Abstract
Global Navigation Satellite System (GNSS) vertical displacements measuring the elastic response of Earth's crust to changes in hydrologic mass have been used to produce terrestrial water storage change (∆TWS) estimates for studying both annual ∆TWS as well as multi-year trends. However, these estimates require a high observation station density and minimal contamination by nonhydrologic deformation sources. The Gravity Recovery and Climate Experiment (GRACE) is another satellite-based measurement system that can be used to measure regional TWS fluctuations. The satellites provide highly accurate ∆TWS estimates with global coverage but have a low spatial resolution of ∼400 km. Here, we put forward the mathematical framework for a joint inversion of GNSS vertical displacement time series with GRACE ∆TWS to produce more accurate spatiotemporal maps of ∆TWS, accounting for the observation errors, data gaps, and nonhydrologic signals. We aim to utilize the regional sensitivity to ∆TWS provided by GRACE mascon solutions with higher spatial resolution provided by GNSS observations. Our approach utilizes a continuous wavelet transform to decompose signals into their building blocks and separately invert for long-term and short-term mass variations. This allows us to preserve trends, annual, interannual, and multi-year changes in TWS that were previously challenging to capture by satellite-based measurement systems or hydrological models, alone. We focus our study in California, USA, which has a dense GNSS network and where recurrent, intense droughts put pressure on freshwater supplies. We highlight the advantages of our joint inversion results for a tectonically active study region by comparing them against inversion results that use only GNSS vertical deformation as well as with maps of ∆TWS from hydrological models and other GRACE solutions. We find that our joint inversion framework results in a solution that is regionally consistent with the GRACE ∆TWS solutions at different temporal scales but has an increased spatial resolution that allows us to differentiate between regions of high and low mass change better than using GRACE alone.
Collapse
Affiliation(s)
- G. Carlson
- Department of Geological SciencesVirginia Polytechnic and State UniversityBlacksburgVAUSA
| | - S. Werth
- Department of Geological SciencesVirginia Polytechnic and State UniversityBlacksburgVAUSA
| | - M. Shirzaei
- Department of Geological SciencesVirginia Polytechnic and State UniversityBlacksburgVAUSA
| |
Collapse
|
4
|
Improving the Inversion Accuracy of Terrestrial Water Storage Anomaly by Combining GNSS and LSTM Algorithm and Its Application in Mainland China. REMOTE SENSING 2022. [DOI: 10.3390/rs14030535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Densely distributed Global Navigation Satellite System (GNSS) stations can invert the terrestrial water storage anomaly (TWSA) with high precision. However, the uneven distribution of GNSS stations greatly limits the application of TWSA inversion. The purpose of this study was to compensate for the spatial coverage of GNSS stations by simulating the vertical deformation in unobserved grids. First, a new deep learning weight loading inversion model (DWLIM) was constructed by combining the long short-term memory (LSTM) algorithm, inverse distance weight, and the crustal load model. DWLIM is beneficial for improving the inversion accuracy of TWSA based on the GNSS vertical displacement. Second, the DWLIM-based and traditional GNSS-derived TWSA methods were utilized to derive TWSA over mainland China. Furthermore, the TWSA results were compared with the TWSA solutions of the Gravity Recovery and Climate Experiment (GRACE) and Global Land Data Assimilation System (GLDAS) model. The results indicate that the maximum Pearson’s correlation coefficient (PCC), Nash–Sutcliffe efficiency (NSE) coefficient, and root mean square error (RMSE) equal 0.81, 0.61, and 2.18 cm, respectively. The accuracy of DWLIM was higher than that of the traditional GNSS inversion method according to PCC, NSE, and RMSE, which were increased by 67.11, 128.15, and 22.75%. The inversion strategy of DWLIM can effectively improve the accuracy of TWSA inversion in regions with unevenly distributed GNSS stations. Third, this study investigated the variation characteristics of TWSA based on DWLIM in 10 river basins over mainland China. The analysis shows that the TWSA amplitudes of Songhua and Liaohe River basins are significantly higher than those of the other basins. Moreover, TWSA sequences in each river basin contain annual seasonal signals, and the wave peaks of TWSA estimates emerge between June and July. Overall, DWLIM provides a useful measure to derive TWSA in regions where GNSS stations are uneven or sparse.
Collapse
|
5
|
Estimation of Terrestrial Water Storage Variations in Sichuan-Yunnan Region from GPS Observations Using Independent Component Analysis. REMOTE SENSING 2022. [DOI: 10.3390/rs14020282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
GPS can be used to measure land motions induced by mass loading variations on the Earth’s surface. This paper presents an independent component analysis (ICA)-based inversion method that uses vertical GPS coordinate time series to estimate the change of terrestrial water storage (TWS) in the Sichuan-Yunnan region in China. The ICA method was applied to extract the hydrological deformation signals from the vertical coordinate time series of GPS stations in the Sichuan-Yunnan region from the Crustal Movement Observation Network of China (CMONC). These vertical deformation signals were then inverted to TWS variations. Comparative experiments were conducted based on Gravity Recovery and Climate Experiment (GRACE) data and a hydrological model for validation. The results demonstrate that the TWS changes estimated from GPS(ICA) deformations are highly correlated with the water variations derived from the GRACE data and hydrological model in Sichuan-Yunnan region. The TWS variations are overestimated by the vertical GPS observations the northwestern Sichuan-Yunnan region. The anomalies are likely caused by inaccurate atmospheric loading correction models or residual tropospheric errors in the region with high topographic variability and can be reduced by ICA preprocessing.
Collapse
|
6
|
Truncated Singular Value Decomposition Regularization for Estimating Terrestrial Water Storage Changes Using GPS: A Case Study over Taiwan. REMOTE SENSING 2020. [DOI: 10.3390/rs12233861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is a typical ill-conditioned problem to invert GPS-measured loading deformations for terrestrial water storage (TWS) changes. While previous studies commonly applied the 2nd-order Tikhonov regularization, we demonstrate the truncated singular value decomposition (TSVD) regularization can also be applied to solve the inversion problem. Given the fact that a regularized estimate is always biased, it is valuable to obtain estimates with different methods for better assessing the uncertainty in the solution. We also show the general cross validation (GCV) can be applied to select the truncation term for the TSVD regularization, producing a solution that minimizes predictive mean-square errors. Analyzing decade-long GPS position time series over Taiwan, we apply the TSVD regularization to estimate mean annual TWS variations for Taiwan. Our results show that the TSVD estimates can sufficiently fit the GPS-measured annual displacements, resulting in randomly distributed displacement residuals with a zero mean and small standard deviation (around 0.1 cm). On the island-wide scale, the GPS-inferred annual TWS variation is consistent with the general seasonal cycle of precipitations. However, on smaller spatial scales, we observe significant differences between the TWS changes estimated by GPS and simulated by GLDAS land surface models in terms of spatiotemporal pattern and magnitude. Based on the results, we discuss some challenges in the characterization of TWS variations using GPS observations over Taiwan.
Collapse
|
7
|
Surface Mass Variations from GPS and GRACE/GFO: A Case Study in Southwest China. REMOTE SENSING 2020. [DOI: 10.3390/rs12111835] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Surface mass variations inferred from the Global Positioning System (GPS), and observed by the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GFO) complement each other in terms of spatial and temporal coverage. This paper presents an analysis of regional surface mass variations inverted from GPS vertical displacements under different density distributions of GPS stations, and compares the GPS-derived mass variations with GRACE/GFO inversion results in spatial and temporal domains. To this end, GPS vertical displacement data from a total of 85 permanent GPS stations of the Crustal Movement Observation Network of China (CMONOC), the latest GRACE/GFO RL06 spherical harmonic (SH) solutions and GRACE RL06 mascon solutions are used to investigate surface mass variations in four regions or basins, including the Yunnan Province (YNP), Min River Basin (MRB), Jialing River Basin (JLRB), and Wu River Basin (WRB) in Southwest China. Our results showed that the spatial distributions and seasonal characteristics of GPS-derived mass change time series agree well with those from GRACE/GFO observations, especially in regions with relatively dense distributions of GPS stations (e.g., in the YNP and MRB), but there are still obvious discrepancies between the GPS and GRACE/GFO results. Scale factor methods (both basin-scaled and pixel-scaled) were employed to reduce the amplitude discrepancies between GPS and GRACE/GFO results. The results also showed that the one-year gap between the GRACE and GFO missions can be bridged by scaled GPS-derived mass change time series in the four studied regions, especially in the YNP and MRB regions (with relatively dense distributions of GPS stations).
Collapse
|
8
|
Water Balance Standardization Approach for Reconstructing Runoff Using GPS at the Basin Upstream. REMOTE SENSING 2020. [DOI: 10.3390/rs12111767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
While in-situ estuarine discharge has been correlated and reconstructed well with localized remotely-sensed data and hydraulic variables since the 1990s, its correlation and reconstruction using averaged GPS-inferred water storage from satellite gravimetry (i.e., GRACE) at the basin upstream based on the water balance standardization (WBS) approach remains unexplored. This study aims to illustrate the WBS approach for reconstructing monthly estuarine discharge (in the form of runoff (R)) at Mekong River Delta, by correlating the averaged GPS-inferred water storage from GRACE of the upstream Mekong Basin with the in-situ R at the Mekong River Delta estuary. The resulting R based on GPS-inferred water storage is comparable to that inferred from GRACE, regardless of in-situ stations within Mekong River Delta being used for the R reconstruction. The resulting R from the WBS approach with GPS water storage converted by GRACE mascon solution attains the lowest normalized root-mean-square error of 0.066, and the highest Pearson correlation coefficient of 0.974 and Nash-Sutcliffe efficiency of 0.950. Regardless of using either GPS-inferred or GRACE-inferred water storage, the WBS approach shows an increase of 1–4% in accuracy when compared to those reconstructed from remotely-sensed water balance variables. An external assessment also exhibits similar accuracies when examining the R estimated at another station location. By comparing the reconstructed and estimated Rs between the entrance and the estuary mouth, a relative error of 1–4% is found, which accounts for the remaining effect of tidal backwater on the estimated R. Additional errors might be caused by the accumulated errors from the proposed approach, the unknown signals in the remotely-sensed water balance variables, and the variable time shift across different years between the Mekong Basin at the upstream and the estuary at the downstream.
Collapse
|
9
|
Upstream GPS Vertical Displacement and its Standardization for Mekong River Basin Surface Runoff Reconstruction and Estimation. REMOTE SENSING 2019. [DOI: 10.3390/rs12010018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Surface runoff (R), which is another expression for river water discharge of a river basin, is a critical measurement for regional water cycles. Over the past two decades, river water discharge has been widely investigated, which is based on remotely sensed hydraulic and hydrological variables as well as indices. This study aims to demonstrate the potential of upstream global positioning system (GPS) vertical displacement (VD) and its standardization to statistically derive R time series, which has not been reported in recent literature. The correlation between the in situ R at estuaries and averaged GPS-VD and its standardization in the river basin upstream on a monthly temporal scale of the Mekong River Basin (MRB) is examined. It was found that the reconstructed R time series from the latter agrees with and yields a similar performance to that from the terrestrial water storage based on gravimetric satellite (i.e., Gravity Recovery and Climate Experiment (GRACE)) and traditional remote sensing data. The reconstructed R time series from the standardized GPS-VD was found to have a 2–7% accuracy increase against those without standardization. On the other hand, it is comparable to data that are obtained by the Palmer drought severity index (PDSI). Similar accuracies are exhibited by the estimated R when externally validated through another station location with in situ time series. The comparison of the estimated R at the entrance of river delta against that at the estuaries indicates a 1–3% relative error induced by the residual ocean tidal effect at the estuary. The reconstructed R from the standardized GPS-VD yields the lowest total relative error of less than 9% when accounting for the main upstream area of the MRB. The remaining errors may be the result of the combined effect of the proposed methodology, remaining environmental signals in the data time series, and potential time lag (less than a month) between the upstream MRB and estuary.
Collapse
|