1
|
McCarthy OS, Contractor K, Figueira WF, Gleason ACR, Viehman TS, Edwards CB, Sandin SA. Closing the gap between existing large-area imaging research and marine conservation needs. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14145. [PMID: 37403804 DOI: 10.1111/cobi.14145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
Emerging technology has immense potential to increase the scale and efficiency of marine conservation. One such technology is large-area imaging (LAI), which relies on structure-from-motion photogrammetry to create composite products, including 3-dimensional (3-D) environmental models, that are larger in spatial extent than the individual images used to create them. Use of LAI has become widespread in certain fields of marine science, primarily to measure the 3D structure of benthic ecosystems and track change over time. However, the use of LAI in the field of marine conservation appears limited. We conducted a review of the coral reef literature on the use of LAI to identify research themes and regional trends in applications of this technology. We also surveyed 135 coral reef scientists and conservation practitioners to determine community familiarity with LAI, evaluate barriers practitioners face in using LAI, and identify applications of LAI believed to be most exciting or relevant to coral conservation. Adoption of LAI was limited primarily to researchers at institutions based in advanced economies and was applied infrequently to conservation, although conservation practitioners and survey respondents from emerging economies indicated they expect to use LAI in the future. Our results revealed disconnect between current LAI research topics and conservation priorities identified by practitioners, highlighting the need for more diverse, conservation-relevant research using LAI. We provide recommendations for how early adopters of LAI (typically Global North scientists from well-resourced institutions) can facilitate access to this conservation technology. These recommendations include developing training resources, creating partnerships for data storage and analysis, publishing standard operating procedures for LAI workflows, standardizing methods, developing tools for efficient data extraction from LAI products, and conducting conservation-relevant research using LAI.
Collapse
Affiliation(s)
- Orion S McCarthy
- Scripps Institution of Oceanography, Center for Marine Biodiversity and Conservation, University of California San Diego, La Jolla, California, USA
| | - Kanisha Contractor
- Scripps Institution of Oceanography, Center for Marine Biodiversity and Conservation, University of California San Diego, La Jolla, California, USA
| | - Will F Figueira
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | | | - T Shay Viehman
- National Centers for Coastal Ocean Science, NOAA National Ocean Service, Beaufort, North Carolina, USA
| | - Clinton B Edwards
- Scripps Institution of Oceanography, Center for Marine Biodiversity and Conservation, University of California San Diego, La Jolla, California, USA
- Consolidated Safety Services Inc., under contract to NOAA National Centers for Coastal Ocean Science, Fairfax, Virginia, USA
| | - Stuart A Sandin
- Scripps Institution of Oceanography, Center for Marine Biodiversity and Conservation, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Pulido Mantas T, Roveta C, Calcinai B, Coppari M, Di Camillo CG, Marchesi V, Marrocco T, Puce S, Cerrano C. Photogrammetry as a promising tool to unveil marine caves' benthic assemblages. Sci Rep 2023; 13:7587. [PMID: 37165208 PMCID: PMC10172382 DOI: 10.1038/s41598-023-34706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Traditionally, monitoring approaches to survey marine caves have been constrained by equipment limitations and strict safety protocols. Nowadays, the rise of new approaches opens new possibilities to describe these peculiar ecosystems. The current study aimed to explore the potential of Structure from Motion (SfM) photogrammetry to assess the abundance and spatial distribution of the sessile benthic assemblages inside a semi-submerged marine cave. Additionally, since impacts of recent date mussel Lithophaga lithophaga illegal fishing were recorded, a special emphasis was paid to its distribution and densities. The results of SfM were compared with a more "traditional approach", by simulating photo-quadrats deployments over the produced orthomosaics. A total of 22 sessile taxa were identified, with Porifera representing the dominant taxa within the cave, and L. lithophaga presenting a density of 88.3 holes/m2. SfM and photo-quadrats obtained comparable results regarding species richness, percentage cover of identified taxa and most of the seascape metrics, while, in terms of taxa density estimations, photo-quadrats highly overestimated their values. SfM resulted in a suitable non-invasive technique to record marine cave assemblages. Seascape indexes proved to be a comprehensive way to describe the spatial pattern of distribution of benthic organisms, establishing a useful baseline to assess future community shifts.
Collapse
Affiliation(s)
- Torcuato Pulido Mantas
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Camilla Roveta
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Barbara Calcinai
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Martina Coppari
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Cristina Gioia Di Camillo
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Veronica Marchesi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Teo Marrocco
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Stefania Puce
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Carlo Cerrano
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
- Fano Marine Center, Viale Adriatico 1/N, 61032, Fano, Italy
- Stazione Zoologica di Napoli Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| |
Collapse
|
3
|
Mancini G, Ventura D, Casoli E, Belluscio A, Ardizzone GD. Transplantation on a Posidonia oceanica meadow to facilitate its recovery after the Concordia shipwrecking. MARINE POLLUTION BULLETIN 2022; 179:113683. [PMID: 35537303 DOI: 10.1016/j.marpolbul.2022.113683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Ecological restoration is an important tool to reverse habitat loss and recover ecosystem services. Here, for two years, we examine the dynamic of Posidonia oceanica following the restoration of a 1149 m2 meadow damaged by the Concordia shipwreck. To evaluate the suitability of a recently employed seagrass restoration protocol, we assessed the patches' survival and development by high-spatial resolution photomosaics over the whole transplanted surface. To estimate recovery trajectories, we quantified the cuttings' survival, shoot density, and Daily Leaf Production within fixed monitoring squares. The outcomes confirmed that our protocol could be efficiently applied at larger scales, showing diminutions in cuttings' survival and shoot density over the first year (up to -20%), followed by stability in the number of living cuttings and increases of leaf bundles (up to +5%/year). Our insights demonstrate that the recovery of P. oceanica can be speeded up and underline the need for case-specific transplantation strategies.
Collapse
Affiliation(s)
- G Mancini
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy; CIBM, Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci", Viale N. Sauro 4, I-57128 Livorno, Italy.
| | - D Ventura
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy; CIBM, Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci", Viale N. Sauro 4, I-57128 Livorno, Italy
| | - E Casoli
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy; CIBM, Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci", Viale N. Sauro 4, I-57128 Livorno, Italy
| | - A Belluscio
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy; CIBM, Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci", Viale N. Sauro 4, I-57128 Livorno, Italy
| | - G D Ardizzone
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy; CIBM, Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci", Viale N. Sauro 4, I-57128 Livorno, Italy
| |
Collapse
|
4
|
Bayley DTI, Mogg AOM. A protocol for the large‐scale analysis of reefs using Structure from Motion photogrammetry. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13476] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel T. I. Bayley
- Centre for Biodiversity and Environment Research University College London London UK
| | - Andrew O. M. Mogg
- Tritonia Scientific Ltd.Dunstaffnage Marine Laboratories Oban UK
- National Facility for Scientific DivingScottish Association of Marine Science Oban UK
| |
Collapse
|