1
|
Han T, Xie C, Yang Y, Zhang Y, Huang Y, Liu Y, Chen K, Sun H, Zhou J, Liu C, Guo J, Wu Z, Li SM. Spatial mapping of greenhouse gases using a UAV monitoring platform over a megacity in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175428. [PMID: 39128527 DOI: 10.1016/j.scitotenv.2024.175428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/15/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Urban environments are recognized as main anthropogenic contributors to greenhouse gas (GHG) emissions, characterized by unevenly distributed emission sources over the urban environments. However, spatial GHG distributions in urban regions are typically obtained through monitoring at only a limited number of locations, or through model studies, which can lead to incomplete insights into the heterogeneity in the spatial distribution of GHGs. To address such information gap and to evaluate the spatial representation of a planned GHG monitoring network, a custom-developed atmospheric sampler was deployed on a UAV platform in this study to map the CO2 and CH4 mixing ratios in the atmosphere over Zhengzhou in central China, a megacity of nearly 13 million people. The aerial survey was conducted along the main roads at an altitude of 150 m above ground, covering a total distance of 170 km from the city center to the suburbs. The spatial distributions of CO2 and CH4 mixing ratios in Zhengzhou exhibited distinct heterogeneities, with average mixing ratios of CO2 and CH4 at 439.2 ± 10.8 ppm and 2.12 ± 0.04 ppm, respectively. A spatial autocorrelation analysis was performed on the measured GHG mixing ratios across the city, revealing a spatial correlation range of approximately 2 km for both CO2 and CH4 in the urban area. Such a spatial autocorrelation distance suggests that the urban GHG monitoring network designed for emission inversion purposes need to have a spatial resolution of 4 km to characterize the spatial heterogeneities in the GHGs. This UAV-based measurement approach demonstrates its capability to monitor GHG mixing ratios across urban landscapes, providing valuable insights for GHG monitoring network design.
Collapse
Affiliation(s)
- Tianran Han
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Conghui Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Yanrong Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Yuheng Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Yufei Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Yayong Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Keyu Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Haijiong Sun
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Jietao Zhou
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Chang Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Junfei Guo
- Beijing Wisdominc Technology Co., Ltd., Beijing 100070, PR China
| | - Zhijun Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Shao-Meng Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
2
|
Wu C, Ju Y, Yang S, Zhang Z, Chen Y. Reconstructing annual XCO 2 at a 1 km×1 km spatial resolution across China from 2012 to 2019 based on a spatial CatBoost method. ENVIRONMENTAL RESEARCH 2023; 236:116866. [PMID: 37567384 DOI: 10.1016/j.envres.2023.116866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Long-time-series, high-resolution datasets of the column-averaged dry-air mole fraction of carbon dioxide (XCO2) have great practical importance for mitigating the greenhouse effect, assessing carbon emissions and implementing a low-carbon cycle. However, the mainstream XCO2 datasets obtained from satellite observations have coarse spatial resolutions and are inadequate for supporting research applications with different precision requirements. Here, we developed a new spatial machine learning model by fusing spatial information with CatBoost, called SCatBoost, to fill the above gap based on existing global land-mapped 1° XCO2 data (GLM-XCO2). The 1-km-spatial-resolution dataset containing XCO2 values in China from 2012 to 2019 reconstructed by SCatBoost has stronger and more stable predictive power (confirmed with a cross-validation (R2 = 0.88 and RSME = 0.20 ppm)) than other traditional models. According to the estimated dataset, the overall national XCO2 showed an increasing trend, with the annual mean concentration rising from 392.65 ppm to 410.36 ppm. In addition, the spatial distribution of XCO2 concentrations in China reflects significantly higher concentrations in the eastern coastal areas than in the western inland areas. The contributions of this study can be summarized as follows: (1) It proposes SCatBoost, integrating the advantages of machine learning methods and spatial characteristics with a high prediction accuracy; (2) It presents a dataset of fine-scale and high resolution XCO2 over China from 2012 to 2019 by the model of SCatBoost; (3) Based on the generated data, we identify the spatiotemporal trends of XCO2 in the scale of nation and city agglomeration. These long-term and high resolution XCO2 data help understand the spatiotemporal variations in XCO2, thereby improving policy decisions and planning about carbon reduction.
Collapse
Affiliation(s)
- Chao Wu
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China; Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yuechuang Ju
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Shuo Yang
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Zhenwei Zhang
- School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, No.219, NingLiu Road, Nanjing, China
| | - Yixiang Chen
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China; Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
3
|
He C, Ji M, Grieneisen ML, Zhan Y. A review of datasets and methods for deriving spatiotemporal distributions of atmospheric CO 2. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116101. [PMID: 36055102 DOI: 10.1016/j.jenvman.2022.116101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/04/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
As the most abundant greenhouse gas, atmospheric carbon dioxide (CO2) is considered one of the main attributors to climate change. Atmospheric CO2 concentrations can be measured by ground-based monitoring networks, mobile monitoring campaigns, and carbon-observing satellites. However, the worldwide ground-based monitoring networks are composed of sparsely distributed sites and are inadequate to represent the spatiotemporal distributions of CO2. Satellite-based remote sensing features repeated, long-term, and large-scale measurements, so it plays a crucial role in monitoring the global distributions of atmospheric CO2. However, due to the presence of heavy clouds (or aerosols) and the limitation of satellite orbiting tracks, there exist large amounts of missing data in satellite retrievals. Various methods, including chemical transport models (CTMs), geostatistical methods, and regression-based models, have been employed to derive full-coverage spatiotemporal distributions of CO2 based on the limited CO2 measurements. This review summarizes the strengths and limitations of these methods. However, CTMs simulation results can have high uncertainty due to imperfect knowledge of the real world, and the interpolation accuracy of all geostatistical methods is limited by the large amount of data gaps in current satellite retrieved CO2 products. To overcome these limitations, regression-based methods (especially machine learning models) have the ability to predict CO2 with superior predictive performance, so this review also summarizes the framework of the machine learning approach. Leveraging the ongoing advancements of satellite instrumentation, the satellite-based CO2 products have been improving dramatically in recent decades, and this review will describe and critically assess the advantages and disadvantages of the currently used systems in detail. For future improvements, we recommend the fusion of data from multiple satellite retrievals and CTMs by using machine learning algorithms in order to obtain even longer-term, larger-scale, finer-resolution, and higher-accuracy CO2 datasets.
Collapse
Affiliation(s)
- Changpei He
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Mingrui Ji
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Michael L Grieneisen
- Department of Land, Air, and Water Resources, University of California, Davis, CA 95616, United States
| | - Yu Zhan
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China; School of Carbon Neutrality Future Technology, Sichuan University, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
4
|
Fu Y, Sun W, Luo F, Zhang Y, Zhang X. Variation patterns and driving factors of regional atmospheric CO 2 anomalies in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19390-19403. [PMID: 34716552 DOI: 10.1007/s11356-021-17139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Atmospheric CO2 anomaly (△XCO2) is essential in evaluating regional carbon balance. However, it is difficult to understand △XCO2 variation characteristics due to regional differences. This paper explored the inter-annual and inter-monthly variation patterns of △XCO2 in different regions of China based on satellite observations. The relation model between regional △XCO2 and anthropogenic emissions, gross primary productivity (GPP), wind speed, upwind region's emission, and upwind region's CO2 concentration was established. Results show that the annual average △XCO2 in the northwest and southeast regions is stable at around 0 and 1-2 ppm, respectively. Some municipalities directly under the central government and the southern coastal areas showed relatively intense inter-annual fluctuations. Four inter-monthly △XCO2 variation patterns were observed: the northern region has a stable change, the northeast region has the lowest in summer, the southwest region has the highest in summer, and the central region has no obvious change rule. Furthermore, △XCO2 in most areas can be explained by the emission-absorption-transportation model. Significant positive △XCO2 in the southern coastal region in summer may be related to the stable GPP seasonal variation and increased power generation. In the southwestern plateau region, it may be related to the low wind speed and increased soil emission with rising temperature. The stability of the plateau carbon sink and inter-regional cooperation cannot be ignored for improving regional atmospheric environments.
Collapse
Affiliation(s)
- Ying Fu
- College of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing, 100083, China
| | - Wenbin Sun
- College of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing, 100083, China.
| | - Fuli Luo
- College of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing, 100083, China
| | - Yuan Zhang
- College of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing, 100083, China
| | - Xinru Zhang
- College of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing, 100083, China
| |
Collapse
|
5
|
Spatiotemporal Geostatistical Analysis and Global Mapping of CH4 Columns from GOSAT Observations. REMOTE SENSING 2022. [DOI: 10.3390/rs14030654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Methane (CH4) is one of the most important greenhouse gases causing the global warming effect. The mapping data of atmospheric CH4 concentrations in space and time can help us better to understand the characteristics and driving factors of CH4 variation as to support the actions of CH4 emission reduction for preventing the continuous increase of atmospheric CH4 concentrations. In this study, we applied a spatiotemporal geostatistical analysis and prediction to develop an approach to generate the mapping CH4 dataset (Mapping-XCH4) in 1° grid and three days globally using column averaged dry air mole fraction of CH4 (XCH4) data derived from observations of the Greenhouse Gases Observing Satellite (GOSAT) from April 2009 to April 2020. Cross-validation for the spatiotemporal geostatistical predictions showed better correlation coefficient of 0.97 and a mean absolute prediction error of 7.66 ppb. The standard deviation is 11.42 ppb when comparing the Mapping-XCH4 data with the ground measurements from the total carbon column observing network (TCCON). Moreover, we assessed the performance of this Mapping-XCH4 dataset by comparing with the XCH4 simulations from the CarbonTracker model and primarily investigating the variations of XCH4 from April 2009 to April 2020. The results showed that the mean annual increase in XCH4 was 7.5 ppb/yr derived from Mapping-XCH4, which was slightly greater than 7.3 ppb/yr from the ground observational network during the past 10 years from 2010. XCH4 is larger in South Asia and eastern China than in the other regions, which agrees with the XCH4 simulations. The Mapping-XCH4 shows a significant linear relationship and a correlation coefficient of determination (R2) of 0.66, with EDGAR emission inventories over Monsoon Asia. Moreover, we found that Mapping-XCH4 could detect the reduction of XCH4 in the period of lockdown from January to April 2020 in China, likely due to the COVID-19 pandemic. In conclusion, we can apply GOSAT observations over a long period from 2009 to 2020 to generate a spatiotemporally continuous dataset globally using geostatistical analysis. This long-term Mpping-XCH4 dataset has great potential for understanding the spatiotemporal variations of CH4 concentrations induced by natural processes and anthropogenic emissions at a global and regional scale.
Collapse
|
6
|
He J, Christakos G, Wu J, Li M, Leng J. Spatiotemporal BME characterization and mapping of sea surface chlorophyll in Chesapeake Bay (USA) using auxiliary sea surface temperature data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148670. [PMID: 34225143 DOI: 10.1016/j.scitotenv.2021.148670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Improving the spatiotemporal coverage of remote sensing (RS) products, such as sea surface chlorophyll concentration (SSCC), can offer a better understanding of the spatiotemporal SSCC distribution for ocean management purposes. In the first part of this work, 834 in-situ SSCC measurements of the SeaBASS-NASA (National Aeronautics and Space Administration) during 2002-2016 served as the empirical dataset. A moving window with ±3 days and ±0.5° centered at each of the in-situ SSCC measurements established a search neighborhood for Moderate Resolution Imaging Spectroradiometer Level 2 (MODIS L2) SSCC and MODIS L2 sea surface temperature (SST) data, and the matched SSCC and SST data were used for building a linear SSCC-SST relationship. The unmatched SST was introduced to the linear model for generating soft SSCC data with uniform distributions. The inherent spatiotemporal dependency of the SSCC distribution was then represented by the Bayesian maximum entropy (BME) method, which incorporated the soft SSCC data as auxiliary variable for SSCC estimation and mapping purposes. The results showed that a 75.3% accuracy improvement of remote SSCC retrieval in terms of R2 can be achieved by BME-based method compared to the original MODIS L2 product. Subsequently, the BME-based method was applied to obtain daily SSCC dataset in Chesapeake Bay (USA) during the period 2010-2019. It was found that the SSCC distribution exhibited a decreasing spatial trend from the upper bay to the outer bay, whereas decreasing and increasing temporal trends were detected during the periods 2011-2014 and 2016-2019, respectively. The generalized Cauchy process was used to quantitatively describe the autocorrelation SSCC function in the Chesapeake Bay. The results showed that the outer bay exhibited the strongest long-range dependence among the four sub-regions, whereas the middle bay exhibited the weakest long-range dependence. Finally, one-point and two-point stochastic site indicators (SSIs) were employed to explore the spatiotemporal SSCC characteristics in Chesapeake Bay. The one-point SSI results showed that nearly 100% of the upper, middle and the lower bay areas experienced a high SSCC level (>5 mg/m3) during the entire study period. The area with SSCC >5 mg/m3 in the outer bay increased a lot during the winter season, but the area with SSCC >10 or 20 mg/m3 decreased significantly in the upper, middle and lower bay. Simultaneously, the SSCC dispersion in these areas was rather small during the winter season. On the other hand, the two-point SSI results showed that although the SSCC levels differ among the four sub-regions, but the SSCC connectivity structures between pairs of points also displayed some similarities in terms of their spatiotemporal dependency. In conclusion, the proposed BME-based method was shown to be a promising remote SSCC mapping technique that exhibited a powerful ability to improve both accuracy and coverage of RS products. The SSIs can be also used to explore the spatiotemporal characteristics of a variety of natural attributes in waters.
Collapse
Affiliation(s)
- Junyu He
- Ocean Academy, Zhejiang University, Zhoushan 316021, P. R. China; Ocean College, Zhejiang University, Zhoushan 316021, P. R. China
| | - George Christakos
- Ocean College, Zhejiang University, Zhoushan 316021, P. R. China; Department of Geography, San Diego State University, San Diego 92182-4493, USA.
| | - Jiaping Wu
- Ocean Academy, Zhejiang University, Zhoushan 316021, P. R. China; Ocean College, Zhejiang University, Zhoushan 316021, P. R. China
| | - Ming Li
- Ocean College, Zhejiang University, Zhoushan 316021, P. R. China; East China Normal University, Shanghai 200062, P. R. China
| | - Jianxing Leng
- Ocean Academy, Zhejiang University, Zhoushan 316021, P. R. China; Ocean College, Zhejiang University, Zhoushan 316021, P. R. China
| |
Collapse
|
7
|
Detecting the Responses of CO2 Column Abundances to Anthropogenic Emissions from Satellite Observations of GOSAT and OCO-2. REMOTE SENSING 2021. [DOI: 10.3390/rs13173524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The continuing increase in atmospheric CO2 concentration caused by anthropogenic CO2 emissions significantly contributes to climate change driven by global warming. Satellite measurements of long-term CO2 data with global coverage improve our understanding of global carbon cycles. However, the sensitivity of the space-borne measurements to anthropogenic emissions on a regional scale is less explored because of data sparsity in space and time caused by impacts from geophysical factors such as aerosols and clouds. Here, we used global land mapping column averaged dry-air mole fractions of CO2 (XCO2) data (Mapping-XCO2), generated from a spatio-temporal geostatistical method using GOSAT and OCO-2 observations from April 2009 to December 2020, to investigate the responses of XCO2 to anthropogenic emissions at both global and regional scales. Our results show that the long-term trend of global XCO2 growth rate from Mapping-XCO2, which is consistent with that from ground observations, shows interannual variations caused by the El Niño Southern Oscillation (ENSO). The spatial distributions of XCO2 anomalies, derived from removing background from the Mapping-XCO2 data, reveal XCO2 enhancements of about 1.5–3.5 ppm due to anthropogenic emissions and seasonal biomass burning in the wintertime. Furthermore, a clustering analysis applied to seasonal XCO2 clearly reveals the spatial patterns of atmospheric transport and terrestrial biosphere CO2 fluxes, which help better understand and analyze regional XCO2 changes that are associated with atmospheric transport. To quantify regional anomalies of CO2 emissions, we selected three representative urban agglomerations as our study areas, including the Beijing-Tian-Hebei region (BTH), the Yangtze River Delta urban agglomerations (YRD), and the high-density urban areas in the eastern USA (EUSA). The results show that the XCO2 anomalies in winter well capture the several-ppm enhancement due to anthropogenic CO2 emissions. For BTH, YRD, and EUSA, regional positive anomalies of 2.47 ± 0.37 ppm, 2.20 ± 0.36 ppm, and 1.38 ± 0.33 ppm, respectively, can be detected during winter months from 2009 to 2020. These anomalies are slightly higher than model simulations from CarbonTracker-CO2. In addition, we compared the variations in regional XCO2 anomalies and NO2 columns during the lockdown of the COVID-19 pandemic from January to March 2020. Interestingly, the results demonstrate that the variations of XCO2 anomalies have a positive correlation with the decline of NO2 columns during this period. These correlations, moreover, are associated with the features of emitting sources. These results suggest that we can use simultaneously observed NO2, because of its high detectivity and co-emission with CO2, to assist the analysis and verification of CO2 emissions in future studies.
Collapse
|
8
|
Evidence of Carbon Uptake Associated with Vegetation Greening Trends in Eastern China. REMOTE SENSING 2020. [DOI: 10.3390/rs12040718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Persistent and widespread increase of vegetation cover, identified as greening, has been observed in areas of the planet over late 20th century and early 21st century by satellite-derived vegetation indices. It is difficult to verify whether these regions are net carbon sinks or sources by studying vegetation indices alone. In this study, we investigate greening trends in Eastern China (EC) and corresponding trends in atmospheric CO2 concentrations. We used multiple vegetation indices including NDVI and EVI to characterize changes in vegetation activity over EC from 2003 to 2016. Gap-filled time series of column-averaged CO2 dry air mole fraction (XCO2) from January 2003 to May 2016, based on observations from SCIAMACHY, GOSAT, and OCO-2 satellites, were used to calculate XCO2 changes during growing season for 13 years. We derived a relationship between XCO2 and surface net CO2 fluxes from two inversion model simulations, CarbonTracker and Monitoring Atmospheric Composition and Climate (MACC), and used those relationships to estimate the biospheric CO2 flux enhancement based on satellite observed XCO2 changes. We observed significant growing period (GP) greening trends in NDVI and EVI related to cropland intensification and forest growth in the region. After removing the influence of large urban center CO2 emissions, we estimated an enhanced XCO2 drawdown during the GP of −0.070 to −0.084 ppm yr−1. Increased carbon uptake during the GP was estimated to be 28.41 to 46.04 Tg C, mainly from land management, which could offset about 2–3% of EC’s annual fossil fuel emissions. These results show the potential of using multi-satellite observed XCO2 to estimate carbon fluxes from the regional biosphere, which could be used to verify natural sinks included as national contributions of greenhouse gas emissions reduction in international climate change agreements like the UNFCC Paris Accord.
Collapse
|