1
|
Remote Monitoring of Ground Motion Hazards in High Mountain Terrain Using InSAR: A Case Study of the Lake Sarez Area, Tajikistan. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High mountain terrains, with steep slopes and deep valleys, are generally challenging areas to monitor using satellite earth observation techniques since the terrain creates perspective distortions and differences in illumination that can occlude or obfuscate a significant proportion of the land. This is particularly prominent in synthetic aperture radar (SAR) data, where the oblique geometry can result in large areas of layover and shadow, which must be excluded from any analysis. Interferometric SAR (InSAR) is an established technique for monitoring ground motion and this study assesses its potential for geohazard monitoring in mountainous areas using Lake Sarez in Tajikistan as a case study, applying SAR data from the Sentinel-1 mission. It is shown that, although the effect of layover and shadow is severe, a judicious combination of ascending and descending satellite passes is still capable of surveying 88% of the land surface. It is also demonstrated that, through the use of an advanced InSAR technique (the APSIS™ Intermittent Small Baseline Subset technique), near-complete coverage of ground motion measurements is possible, despite intermittent snow cover. Moreover, this is achieved without the need for ground control, which can be hazardous to establish in such areas. It is concluded that a combination of satellite passes and advanced InSAR techniques greatly facilitates the remote monitoring of ground motion hazards in high mountain areas.
Collapse
|
2
|
The Use of Interferometric Synthetic Aperture Radar for Isolating the Contribution of Major Shocks: The Case of the March 2021 Thessaly, Greece, Seismic Sequence. GEOSCIENCES 2021. [DOI: 10.3390/geosciences11050191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We study the surface deformation following a moderate size M5+ earthquake sequence that occurred close to Tyrnavos village (Thessaly, Greece) in March 2021. We adopt the interferometric synthetic aperture radar (InSAR) technique to exploit several pairs of Sentinel-1 acquisitions and successfully retrieve the ground movement caused by the three major events (M5+) of the sequence. The mainshocks occurred at depths varying from ~7 to ~10 km, and are related to the activation of at least three normal faults characterizing the area previously unknown. Thanks to the 6-day repeat time of the Sentinel-1 mission, InSAR analysis allowed us to detect both the surface displacement due to the individual analyzed earthquakes and the cumulative displacement caused by the entire seismic sequence. Especially in the case of a seismic sequence that occurs over a very short time span, it is quite uncommon to be able to separate the surface effects ascribable to the mainshock and the major aftershocks because the time frequency of radar satellite acquisitions often hamper the temporal separation of such events. In this work, we present the results obtained through the InSAR data analysis, and are able to isolate single seismic events that were part of the sequence.
Collapse
|
3
|
Mapping Complete Three-Dimensional Ice Velocities by Integrating Multi-Baseline and Multi-Aperture InSAR Measurements: A Case Study of the Grove Mountains Area, East Antarctic. REMOTE SENSING 2021. [DOI: 10.3390/rs13040643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Antarctic is one of the most sensitive areas to climate change, and ice velocity is a fundamental parameter for quantitatively assessing the glacier mass balance. Interferometric synthetic aperture radar (InSAR), a powerful tool for monitoring surface deformation with the advantages of having high precision and wide coverage, has been widely used in determining ice velocity in the Antarctic. However, the mapping of complete three-dimensional (3D) ice velocities is greatly limited by the imaging geometries and digital elevation model (DEM)-induced errors. In this study, we propose the integration of multibaseline and multiaperture InSAR measurements from the ENVISAT ASAR datasets to derive complete 3D ice velocities in the Grove Mountains area of the Antarctic. The results show that the estimated complete 3D ice velocities are in good agreement with MEaSUREs and GPS observations. Compared with the conventional 2D and quasi-3D ice velocities, the complete 3D ice velocities can effectively eliminate the effects of DEM errors and elevation changes and are also capable of retrieving the thickness change of the ice, which provides important information on the origin of mass transition.
Collapse
|
4
|
Surface Rupture Kinematics and Coseismic Slip Distribution during the 2019 Mw7.1 Ridgecrest, California Earthquake Sequence Revealed by SAR and Optical Images. REMOTE SENSING 2020. [DOI: 10.3390/rs12233883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The 2019 Ridgecrest, California earthquake sequence ruptured along a complex fault system and triggered seismic and aseismic slips on intersecting faults. To characterize the surface rupture kinematics and fault slip distribution, we used optical images and Interferometric Synthetic Aperture Radar (InSAR) observations to reconstruct the displacement caused by the earthquake sequence. We further calculated curl and divergence from the north-south and east-west components, to effectively identify the surface rupture traces. The results show that the major seismogenic fault had a length of ~55 km and strike of 320° and consisted of five secondary faults. On the basis of the determined multiple-fault geometries, we inverted the coseismic slip distributions by InSAR measurements, which indicates that the Mw7.1 mainshock was dominated by the right-lateral strike-slip (maximum strike-slip of ~5.8 m at the depth of ~7.5 km), with a small dip-slip component (peaking at ~1.8 m) on an east-dipping fault. The Mw6.4 foreshock was dominated by the left-lateral strike-slip on a north-dipping fault. These earthquakes triggered obvious aseismic creep along the Garlock fault (117.3° W–117.5° W). These results are consistent with the rupture process of the earthquake sequence, which featured a complicated cascading rupture rather than a single continuous rupture front propagating along multiple faults.
Collapse
|