1
|
Redana M, Gibbins C, Lancaster LT. Determining critical periods for thermal acclimatisation using a distributed lag non-linear modelling approach. Ecol Evol 2024; 14:e11451. [PMID: 38826161 PMCID: PMC11140238 DOI: 10.1002/ece3.11451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/04/2024] Open
Abstract
Rapid changes in thermal environments are threatening many species worldwide. Thermal acclimatisation may partially buffer species from the impacts of these changes, but currently, the knowledge about the temporal dynamics of acclimatisation remains limited. Moreover, acclimatisation phenotypes are typically determined in laboratory conditions that lack the variability and stochasticity that characterise the natural environment. Through a distributed lag non-linear model (DLNM), we use field data to assess how the timing and magnitude of past thermal exposures influence thermal tolerance. We apply the model to two Scottish freshwater Ephemeroptera species living in natural thermal conditions. Model results provide evidence that rapid heat hardening effects are dramatic and reflect high rates of change in temperatures experienced over recent hours to days. In contrast, temperature change magnitude impacted acclimatisation over the course of weeks but had no impact on short-term responses. Our results also indicate that individuals may de-acclimatise their heat tolerance in response to cooler environments. Based on the novel insights provided by this powerful modelling approach, we recommend its wider uptake among thermal physiologists to facilitate more nuanced insights in natural contexts, with the additional benefit of providing evidence needed to improve the design of laboratory experiments.
Collapse
Affiliation(s)
- Matteo Redana
- Department of ZoologyUniversity of CambridgeCambridgeUK
| | - Chris Gibbins
- School of Environmental and Geographical SciencesUniversity of Nottingham MalaysiaSemenyihMalaysia
| | | |
Collapse
|
2
|
Loerke E, Pohle I, Drummond D, Miller PE, Geris J. Surface Measure to Depth (SMeTD): a new low-budget system for 3D water temperature measurements for combining with UAV-based thermal infrared imagery. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1533. [PMID: 38008869 PMCID: PMC10678821 DOI: 10.1007/s10661-023-12127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/10/2023] [Indexed: 11/28/2023]
Abstract
Characterising spatial patterns in water temperature is important for monitoring aquatic habitats and understanding physical and biogeochemical processes to support environmental management decisions. As freshwater bodies exhibit high spatial and temporal variability, high-resolution 3D temperature data are essential to understand local anomalies. The acquisition of simultaneously high spatial and temporal datasets in the field has so far been limited by costs and/or workload associated with commonly used monitoring systems.We present a new, low-cost, spatially and temporally flexible 3D water temperature monitoring system, Surface Measures to Depth (SMeTD). SMeTD can be used to provide information on the relation of water surface temperature to changes with depth, characterise water temperature in 3D and ground truth remotely sensed thermal infrared data. The systems performance was tested under laboratory conditions and under controlled conditions in the field. This revealed an accuracy comparable to established but more expensive monitoring systems. Field testing of SMeTD involved 1-min data collection of 3D water temperature for a full diurnal cycle in a lake. The 3D temperature patterns were supported by a thermal infrared image of the lakes surface. The field dataset demonstrated higher water temperatures and higher water temperature variation at the surface compared to deeper layers. SMeTD can be used to observe a broad range of hydrological processes in natural and artificial aquatic environments and help to understand processes involved with energy budgets, infiltration, limnology, or groundwater surface water exchange.
Collapse
|
3
|
Mejia FH, Ouellet V, Briggs MA, Carlson SM, Casas-Mulet R, Chapman M, Collins MJ, Dugdale SJ, Ebersole JL, Frechette DM, Fullerton AH, Gillis CA, Johnson ZC, Kelleher C, Kurylyk BL, Lave R, Letcher BH, Myrvold KM, Nadeau TL, Neville H, Piégay H, Smith KA, Tonolla D, Torgersen CE. Closing the gap between science and management of cold-water refuges in rivers and streams. GLOBAL CHANGE BIOLOGY 2023; 29:5482-5508. [PMID: 37466251 PMCID: PMC10615108 DOI: 10.1111/gcb.16844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/06/2023] [Accepted: 06/09/2023] [Indexed: 07/20/2023]
Abstract
Human activities and climate change threaten coldwater organisms in freshwater ecosystems by causing rivers and streams to warm, increasing the intensity and frequency of warm temperature events, and reducing thermal heterogeneity. Cold-water refuges are discrete patches of relatively cool water that are used by coldwater organisms for thermal relief and short-term survival. Globally, cohesive management approaches are needed that consider interlinked physical, biological, and social factors of cold-water refuges. We review current understanding of cold-water refuges, identify gaps between science and management, and evaluate policies aimed at protecting thermally sensitive species. Existing policies include designating cold-water habitats, restricting fishing during warm periods, and implementing threshold temperature standards or guidelines. However, these policies are rare and uncoordinated across spatial scales and often do not consider input from Indigenous peoples. We propose that cold-water refuges be managed as distinct operational landscape units, which provide a social and ecological context that is relevant at the watershed scale. These operational landscape units provide the foundation for an integrated framework that links science and management by (1) mapping and characterizing cold-water refuges to prioritize management and conservation actions, (2) leveraging existing and new policies, (3) improving coordination across jurisdictions, and (4) implementing adaptive management practices across scales. Our findings show that while there are many opportunities for scientific advancement, the current state of the sciences is sufficient to inform policy and management. Our proposed framework provides a path forward for managing and protecting cold-water refuges using existing and new policies to protect coldwater organisms in the face of global change.
Collapse
Affiliation(s)
- Francine H. Mejia
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Cascadia Field Station, Seattle, Washington, USA
| | - Valerie Ouellet
- National Oceanic and Atmospheric Administration, Northeast Fisheries Science Center, Orono, Maine, USA
| | - Martin A. Briggs
- Observing Systems Division, U.S. Geological Survey, Hydrologic Remote Sensing Branch, Storrs, Connecticut, USA
| | - Stephanie M. Carlson
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Roser Casas-Mulet
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Department of Infrastructure Engineering, School of Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Mollie Chapman
- Department of Geography, URPP Global Change and Biodiversity, University of Zurich, Zurich, Switzerland
| | - Mathias J. Collins
- National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Gloucester, Massachusetts, USA
| | | | - Joseph L. Ebersole
- Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, Oregon, USA
| | - Danielle M. Frechette
- Maine Department of Marine Resources, Bureau of Sea Run Fisheries and Habitat, Augusta, Maine, USA
| | - Aimee H. Fullerton
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Association, Seattle, Washington, USA
| | | | - Zachary C. Johnson
- U.S. Geological Survey, Washington Water Science Center, Tacoma, Washington, USA
| | - Christa Kelleher
- Department of Civil and Environmental Engineering, Lafayette College, Easton, Pennsylvania, USA
- Department of Earth and Environmental Sciences, Syracuse University, Syracuse, New York, USA
| | - Barret L. Kurylyk
- Department of Civil and Resource Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rebecca Lave
- Department of Geography, Indiana University, Bloomington, Indiana, USA
| | - Benjamin H. Letcher
- U.S. Geological Survey, Eastern Ecological Science Center, S.O. Conte Fish Research Center, Turners Falls, Massachusetts, USA
| | - Knut M. Myrvold
- Norwegian Institute for Nature Research, Lillehammer, Norway
| | - Tracie-Lynn Nadeau
- Region 10, Water Division, Oregon Operations Office, U.S. Environmental Protection Agency, Portland, Oregon, USA
| | | | - Herve Piégay
- UMR 5600 CNRS EVS, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Kathryn A. Smith
- Department of Civil and Resource Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Diego Tonolla
- Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Christian E. Torgersen
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Cascadia Field Station, Seattle, Washington, USA
| |
Collapse
|
4
|
Sullivan CJ, Rittenhouse CD, Vokoun JC. Camera traps reveal that terrestrial predators are pervasive at riverscape cold-water thermal refuges. Ecol Evol 2023; 13:e10316. [PMID: 37465613 PMCID: PMC10350816 DOI: 10.1002/ece3.10316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
Perceived predation risks by terrestrial predators are major ecological forces in aquatic systems, particularly for aggregating fish. Riverscape thermal refuges are discrete, localized cold-water patches where fish temporarily aggregate to buffer against heat events. Predation pressures by terrestrial predators at thermal refuges may decrease the thermoregulatory benefits of refuge use, but quantifying such effects can be challenging and controversial when sampling can impose additional stress on fish. We passively monitored terrestrial predator visitation patterns and predation at four thermal refuges in the Housatonic River, Connecticut, USA, between May 18th and September 29th, 2022, with camera traps, a common wildlife monitoring method. Specifically, we (1) assessed diel visitation patterns by different categories of terrestrial predators at thermal refuges and determined if patterns varied among predator categories or with prevailing environmental conditions, and (2) estimated the probability of predation by hour of the day combined across all predator categories, quantifying general predation pressures at refuges. We detected at least one terrestrial predator at a thermal refuge each day, and mean hourly visitation rates (count/h) were highly variable across predator categories and sampling dates. The most supported generalized additive mixed model indicated that terrestrial predator visitation rates (count/h/day) varied with mean daily river discharge and water temperature differential, and relationships differed across categories of terrestrial predators. We observed 22 separate predation attempts on thermoregulating salmonids and predicted that the probability of predation by any terrestrial predator increased from 0.002 to 0.017 throughout a 24 h day (p = .004). Camera traps provided novel evidence that terrestrial predators are pervasive at riverine thermal refuges, which is relevant for refuge conservation and management globally. We recommend the implementation of a coordinated monitoring network across riverine thermal refuges using camera traps, further enriching our ecological understanding of cumulative predator effects in refuges across complex riverscapes.
Collapse
Affiliation(s)
- Christopher J. Sullivan
- Department of Natural Resources and the Environment, Wildlife and Fisheries Conservation CenterUniversity of ConnecticutStorrsConnecticutUSA
| | - Chadwick D. Rittenhouse
- Department of Natural Resources and the Environment, Wildlife and Fisheries Conservation CenterUniversity of ConnecticutStorrsConnecticutUSA
| | - Jason C. Vokoun
- Department of Natural Resources and the Environment, Wildlife and Fisheries Conservation CenterUniversity of ConnecticutStorrsConnecticutUSA
| |
Collapse
|
5
|
Remote Sensing to Characterize River Floodplain Structure and Function. REMOTE SENSING 2022. [DOI: 10.3390/rs14051132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Advancing understanding of the complexities and expansive spatial scales of river ecology can be enhanced through the application of remote sensing. We obtained satellite (Quickbird) and airborne (LIDAR, hyperspectral, multispectral, and thermal) imagery data of an alluvial gravel-bed river floodplain in western Montana to quantify both riparian and aquatic habitats and processes. LIDAR data provided a detailed bare earth DEM and vegetation canopy DEM. We classified river hydraulics and aquatic habitats using a combination of the satellite multispectral, airborne hyperspectral, and LIDAR data coupled with spatially-explicit acoustic Doppler velocity profile data of water depth and velocity. Velocity, depth, and Froude classifications were aggregated into similar hydraulic zones of river habitat classes. Thermal imagery data were coupled with field measurements of temperature and radon gas tracer to identify patterns of water exchange between the alluvial aquifer and the surface. We found a high complexity of aquatic surface temperatures and radon tracer linked to groundwater discharge from the alluvial aquifer. Airborne hyperspectral data were used to identify “hot spots” of periphyton production, which coincided with the complex nature of groundwater–surface water exchange. Airborne hyperspectral data provided differentiation of vegetation patches by dominant species. When the hyperspectral data were coupled to LIDAR first return metrics, we were able to determine vegetation canopy height and relative vegetation patch age classes. The integration of these various remote sensing sources allowed us to characterize the distribution and abundance of floodplain aquatic and riparian species and model processes of change through space and time.
Collapse
|
6
|
Fuller MR, Ebersole JL, Detenbeck NE, Labiosa R, Leinenbach P, Torgersen CE. Integrating thermal infrared stream temperature imagery and spatial stream network models to understand natural spatial thermal variability in streams. J Therm Biol 2021; 100:103028. [PMID: 34503775 PMCID: PMC8509081 DOI: 10.1016/j.jtherbio.2021.103028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 11/24/2022]
Abstract
Under a warmer future climate, thermal refuges could facilitate the persistence of species relying on cold-water habitat. Often these refuges are small and easily missed or smoothed out by averaging in models. Thermal infrared (TIR) imagery can provide empirical water surface temperatures that capture these features at a high spatial resolution (<1 m) and over tens of kilometers. Our study examined how TIR data could be used along with spatial stream network (SSN) models to characterize thermal regimes spatially in the Middle Fork John Day (MFJD) River mainstem (Oregon, USA). We characterized thermal variation in seven TIR longitudinal temperature profiles along the MFJD mainstem and compared them with SSN model predictions of stream temperature (for the same time periods as the TIR profiles). TIR profiles identified reaches of the MFJD mainstem with consistently cooler temperatures across years that were not consistently captured by the SSN prediction models. SSN predictions along the mainstem identified ~80% of the 1-km reach scale temperature warming or cooling trends observed in the TIR profiles. We assessed whether landscape features (e.g., tributary junctions, valley confinement, geomorphic reach classifications) could explain the fine-scale thermal heterogeneity in the TIR profiles (after accounting for the reach-scale temperature variability predicted by the SSN model) by fitting SSN models using the TIR profile observation points. Only the distance to the nearest upstream tributary was identified as a statistically significant landscape feature for explaining some of the thermal variability in the TIR profile data. When combined, TIR data and SSN models provide a data-rich evaluation of stream temperature captured in TIR imagery and a spatially extensive prediction of the network thermal diversity from the outlet to the headwaters.
Collapse
Affiliation(s)
- Matthew R Fuller
- Oak Ridge Institute for Science and Education Postdoc at the U.S. EPA/ORD/CEMM Atlantic Coastal Environmental Sciences Division; 27 Tarzwell Drive, Narragansett, RI 02882, USA.
| | - Joseph L Ebersole
- Research Fish Biologist at the U.S. EPA/ORD/CPHEA Pacific Ecological Systems Division; 200 Southwest 35th Street, Corvallis, OR 97333, USA
| | - Naomi E Detenbeck
- Watershed and Estuarine Diagnostics Branch Ecologist at the U.S. EPA/ORD/CEMM Atlantic Coastal Environmental Sciences Division; 27 Tarzwell Drive, Narragansett, RI 02882, USA
| | - Rochelle Labiosa
- Water Quality Scientist at the U.S. EPA; 1200 Sixth Avenue, Seattle, WA 98101-3140, USA
| | - Peter Leinenbach
- Aquatic and Landscape Ecologist at the U.S. EPA; 1200 Sixth Avenue, Seattle, WA 98101-3140, USA
| | - Christian E Torgersen
- Supervisory Research Landscape Ecologist at the U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Cascadia Field Station; University of Washington School of Environmental and Forest Sciences, Box 352100 Seattle, WA 98195, USA
| |
Collapse
|
8
|
Ouellet V, St-Hilaire A, Dugdale SJ, Hannah DM, Krause S, Proulx-Ouellet S. River temperature research and practice: Recent challenges and emerging opportunities for managing thermal habitat conditions in stream ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139679. [PMID: 32474270 DOI: 10.1016/j.scitotenv.2020.139679] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
There is growing evidence that river temperatures are increasing under climate change, which is expected to be exacerbated by increased abstractions to satisfy human water demands. Water temperature research has experienced crucial advances, both in terms of developing new monitoring and modelling tools, as well as understanding the mechanisms of temperature feedbacks with biogeochemical and ecological processes. However, water practitioners and regulators are challenged with translating the widespread and complex technological, modelling and conceptual advances made in river temperature research into improvements in management practice. This critical review provides a comprehensive overview of recent advances in the state-of-the-art monitoring and modelling tools available to inform ecological research and practice. In so doing, we identify pressing research gaps and suggest paths forward to address practical research and management challenges. The proposed research directions aim to provide new insights into spatio-temporal stream temperature dynamics and unravel drivers and controls of thermal river regimes, including the impacts of changing temperature on metabolism and aquatic biogeochemistry, as well as aquatic organisms. The findings of this review inform future research into ecosystem resilience in the face of thermal degradation and support the development of new management strategies cutting across spatial and temporal scales.
Collapse
Affiliation(s)
- Valerie Ouellet
- University of Birmingham, School of Geography, Earth and Environmental Sciences, Birmingham B15 2TT, UK; Institute for Global Innovation, University of Birmingham, Birmingham B15 2TT, UK.
| | - André St-Hilaire
- INRS Eau Terre Environnement, 490 de la Couronne, Québec, Qc G1K 9A9, Canada; Canadian River Institute, 10 Bailey Drive, P.O. Box 4400, Fredericton, NB E3B 5A3, Canada
| | - Stephen J Dugdale
- University of Nottingham, School of Geography, Nottingham NG7 2RD, UK
| | - David M Hannah
- University of Birmingham, School of Geography, Earth and Environmental Sciences, Birmingham B15 2TT, UK; Institute for Global Innovation, University of Birmingham, Birmingham B15 2TT, UK
| | - Stefan Krause
- University of Birmingham, School of Geography, Earth and Environmental Sciences, Birmingham B15 2TT, UK; Institute for Global Innovation, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|