1
|
Berger K, Machwitz M, Kycko M, Kefauver SC, Van Wittenberghe S, Gerhards M, Verrelst J, Atzberger C, van der Tol C, Damm A, Rascher U, Herrmann I, Paz VS, Fahrner S, Pieruschka R, Prikaziuk E, Buchaillot ML, Halabuk A, Celesti M, Koren G, Gormus ET, Rossini M, Foerster M, Siegmann B, Abdelbaki A, Tagliabue G, Hank T, Darvishzadeh R, Aasen H, Garcia M, Pôças I, Bandopadhyay S, Sulis M, Tomelleri E, Rozenstein O, Filchev L, Stancile G, Schlerf M. Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review. REMOTE SENSING OF ENVIRONMENT 2022; 280:113198. [PMID: 36090616 PMCID: PMC7613382 DOI: 10.1016/j.rse.2022.113198] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Remote detection and monitoring of the vegetation responses to stress became relevant for sustainable agriculture. Ongoing developments in optical remote sensing technologies have provided tools to increase our understanding of stress-related physiological processes. Therefore, this study aimed to provide an overview of the main spectral technologies and retrieval approaches for detecting crop stress in agriculture. Firstly, we present integrated views on: i) biotic and abiotic stress factors, the phases of stress, and respective plant responses, and ii) the affected traits, appropriate spectral domains and corresponding methods for measuring traits remotely. Secondly, representative results of a systematic literature analysis are highlighted, identifying the current status and possible future trends in stress detection and monitoring. Distinct plant responses occurring under shortterm, medium-term or severe chronic stress exposure can be captured with remote sensing due to specific light interaction processes, such as absorption and scattering manifested in the reflected radiance, i.e. visible (VIS), near infrared (NIR), shortwave infrared, and emitted radiance, i.e. solar-induced fluorescence and thermal infrared (TIR). From the analysis of 96 research papers, the following trends can be observed: increasing usage of satellite and unmanned aerial vehicle data in parallel with a shift in methods from simpler parametric approaches towards more advanced physically-based and hybrid models. Most study designs were largely driven by sensor availability and practical economic reasons, leading to the common usage of VIS-NIR-TIR sensor combinations. The majority of reviewed studies compared stress proxies calculated from single-source sensor domains rather than using data in a synergistic way. We identified new ways forward as guidance for improved synergistic usage of spectral domains for stress detection: (1) combined acquisition of data from multiple sensors for analysing multiple stress responses simultaneously (holistic view); (2) simultaneous retrieval of plant traits combining multi-domain radiative transfer models and machine learning methods; (3) assimilation of estimated plant traits from distinct spectral domains into integrated crop growth models. As a future outlook, we recommend combining multiple remote sensing data streams into crop model assimilation schemes to build up Digital Twins of agroecosystems, which may provide the most efficient way to detect the diversity of environmental and biotic stresses and thus enable respective management decisions.
Collapse
Affiliation(s)
- Katja Berger
- Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán 2, Paterna 46980, Valencia, Spain
- Department of Geography, Ludwig-Maximilians-Universität München (LMU), Luisenstr. 37, 80333 Munich, Germany
| | - Miriam Machwitz
- Remote Sensing and Natural Resources Modelling Group, Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Marlena Kycko
- Department of Geoinformatics Cartography and Remote Sensing, Chair of Geomatics and Information Systems, Faculty of Geography and Regional Studies, University of Warsaw, 00-927 Warszawa, Poland
| | - Shawn C. Kefauver
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- AGROTECNIO (Center for Research in Agrotechnology), Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Shari Van Wittenberghe
- Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán 2, Paterna 46980, Valencia, Spain
| | - Max Gerhards
- Earth Observation and Climate Processes, Trier University, 54286 Trier, Germany
| | - Jochem Verrelst
- Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán 2, Paterna 46980, Valencia, Spain
| | - Clement Atzberger
- Institute of Geomatics, University of Natural Resources and Life Sciences, Vienna (BOKU), Peter Jordan Str. 82, 1190 Vienna, Austria
| | - Christiaan van der Tol
- Faculty Geo-Information Science and Earth Observation, ITC, University of Twente, the Netherlands
| | - Alexander Damm
- Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Uwe Rascher
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Ittai Herrmann
- The Plant Sensing Laboratory, The Robert H. Smith Institute for Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Veronica Sobejano Paz
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Sven Fahrner
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Roland Pieruschka
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Egor Prikaziuk
- Faculty Geo-Information Science and Earth Observation, ITC, University of Twente, the Netherlands
| | - Ma. Luisa Buchaillot
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- AGROTECNIO (Center for Research in Agrotechnology), Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Andrej Halabuk
- Institute of Landscape Ecology, Slovak Academy of Sciences, 814 99 Bratislava, Slovakia
| | - Marco Celesti
- HE Space for ESA - European Space Agency, European Space Research and Technology Centre (ESA-ESTEC), Keplerlaan 1, 2201, AZ Noordwijk, the Netherlands
| | - Gerbrand Koren
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, the Netherlands
| | - Esra Tunc Gormus
- Department of Geomatics Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Micol Rossini
- Remote Sensing of Environmental Dynamics Laboratory (LTDA), University of Milano - Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Michael Foerster
- Geoinformation in Environmental Planning Lab, Technische Universität Berlin, 10623 Berlin, Germany
| | - Bastian Siegmann
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Asmaa Abdelbaki
- Earth Observation and Climate Processes, Trier University, 54286 Trier, Germany
| | - Giulia Tagliabue
- Remote Sensing of Environmental Dynamics Laboratory (LTDA), University of Milano - Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Tobias Hank
- Department of Geography, Ludwig-Maximilians-Universität München (LMU), Luisenstr. 37, 80333 Munich, Germany
| | - Roshanak Darvishzadeh
- Faculty Geo-Information Science and Earth Observation, ITC, University of Twente, the Netherlands
| | - Helge Aasen
- Earth Observation and Analysis of Agroecosystems Team, Division Agroecology and Environment, Agroscope, Zurich, Switzerland
- Institute of Agricultural Science, ETH Zürich, Zurich, Switzerland
| | - Monica Garcia
- Research Centre for the Management of Agricultural and Environmental Risks (CEIGRAM), ETSIAAB, Universidad Politécnica de Madrid, 28040, Spain
| | - Isabel Pôças
- ForestWISE - Collaborative Laboratory for Integrated Forest & Fire Management, Quinta de Prados, Campus da UTAD, 5001-801 Vila Real, Portugal
| | | | - Mauro Sulis
- Remote Sensing and Natural Resources Modelling Group, Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Enrico Tomelleri
- Faculty of Science and Technology, Free University of Bozen/Bolzano, Italy
| | - Offer Rozenstein
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization—Volcani Institute, HaMaccabim Road 68, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Lachezar Filchev
- Space Research and Technology Institute, Bulgarian Academy of Sciences (SRTI-BAS), Bulgaria
| | - Gheorghe Stancile
- National Meteorological Administration, Building A, Soseaua Bucuresti-Ploiesti 97, 013686 Bucuresti, Romania
| | - Martin Schlerf
- Remote Sensing and Natural Resources Modelling Group, Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, L-4422 Belvaux, Luxembourg
| |
Collapse
|
7
|
Fei S, Hassan MA, Ma Y, Shu M, Cheng Q, Li Z, Chen Z, Xiao Y. Entropy Weight Ensemble Framework for Yield Prediction of Winter Wheat Under Different Water Stress Treatments Using Unmanned Aerial Vehicle-Based Multispectral and Thermal Data. FRONTIERS IN PLANT SCIENCE 2021; 12:730181. [PMID: 34987529 PMCID: PMC8721222 DOI: 10.3389/fpls.2021.730181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/08/2021] [Indexed: 05/05/2023]
Abstract
Crop breeding programs generally perform early field assessments of candidate selection based on primary traits such as grain yield (GY). The traditional methods of yield assessment are costly, inefficient, and considered a bottleneck in modern precision agriculture. Recent advances in an unmanned aerial vehicle (UAV) and development of sensors have opened a new avenue for data acquisition cost-effectively and rapidly. We evaluated UAV-based multispectral and thermal images for in-season GY prediction using 30 winter wheat genotypes under 3 water treatments. For this, multispectral vegetation indices (VIs) and normalized relative canopy temperature (NRCT) were calculated and selected by the gray relational analysis (GRA) at each growth stage, i.e., jointing, booting, heading, flowering, grain filling, and maturity to reduce the data dimension. The elastic net regression (ENR) was developed by using selected features as input variables for yield prediction, whereas the entropy weight fusion (EWF) method was used to combine the predicted GY values from multiple growth stages. In our results, the fusion of dual-sensor data showed high yield prediction accuracy [coefficient of determination (R 2) = 0.527-0.667] compared to using a single multispectral sensor (R 2 = 0.130-0.461). Results showed that the grain filling stage was the optimal stage to predict GY with R 2 = 0.667, root mean square error (RMSE) = 0.881 t ha-1, relative root-mean-square error (RRMSE) = 15.2%, and mean absolute error (MAE) = 0.721 t ha-1. The EWF model outperformed at all the individual growth stages with R 2 varying from 0.677 to 0.729. The best prediction result (R 2 = 0.729, RMSE = 0.831 t ha-1, RRMSE = 14.3%, and MAE = 0.684 t ha-1) was achieved through combining the predicted values of all growth stages. This study suggests that the fusion of UAV-based multispectral and thermal IR data within an ENR-EWF framework can provide a precise and robust prediction of wheat yield.
Collapse
Affiliation(s)
- Shuaipeng Fei
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, China
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Adeel Hassan
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Dezhou Academy of Agricultural Sciences, Dezhou, China
| | - Yuntao Ma
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Meiyan Shu
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Qian Cheng
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Zongpeng Li
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Zhen Chen
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, China
- *Correspondence: Zhen Chen,
| | - Yonggui Xiao
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Yonggui Xiao,
| |
Collapse
|