1
|
Zhao T, Wang S, Ouyang C, Chen M, Liu C, Zhang J, Yu L, Wang F, Xie Y, Li J, Wang F, Grunwald S, Wong BM, Zhang F, Qian Z, Xu Y, Yu C, Han W, Sun T, Shao Z, Qian T, Chen Z, Zeng J, Zhang H, Letu H, Zhang B, Wang L, Luo L, Shi C, Su H, Zhang H, Yin S, Huang N, Zhao W, Li N, Zheng C, Zhou Y, Huang C, Feng D, Xu Q, Wu Y, Hong D, Wang Z, Lin Y, Zhang T, Kumar P, Plaza A, Chanussot J, Zhang J, Shi J, Wang L. Artificial intelligence for geoscience: Progress, challenges, and perspectives. Innovation (N Y) 2024; 5:100691. [PMID: 39285902 PMCID: PMC11404188 DOI: 10.1016/j.xinn.2024.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/17/2024] [Indexed: 09/19/2024] Open
Abstract
This paper explores the evolution of geoscientific inquiry, tracing the progression from traditional physics-based models to modern data-driven approaches facilitated by significant advancements in artificial intelligence (AI) and data collection techniques. Traditional models, which are grounded in physical and numerical frameworks, provide robust explanations by explicitly reconstructing underlying physical processes. However, their limitations in comprehensively capturing Earth's complexities and uncertainties pose challenges in optimization and real-world applicability. In contrast, contemporary data-driven models, particularly those utilizing machine learning (ML) and deep learning (DL), leverage extensive geoscience data to glean insights without requiring exhaustive theoretical knowledge. ML techniques have shown promise in addressing Earth science-related questions. Nevertheless, challenges such as data scarcity, computational demands, data privacy concerns, and the "black-box" nature of AI models hinder their seamless integration into geoscience. The integration of physics-based and data-driven methodologies into hybrid models presents an alternative paradigm. These models, which incorporate domain knowledge to guide AI methodologies, demonstrate enhanced efficiency and performance with reduced training data requirements. This review provides a comprehensive overview of geoscientific research paradigms, emphasizing untapped opportunities at the intersection of advanced AI techniques and geoscience. It examines major methodologies, showcases advances in large-scale models, and discusses the challenges and prospects that will shape the future landscape of AI in geoscience. The paper outlines a dynamic field ripe with possibilities, poised to unlock new understandings of Earth's complexities and further advance geoscience exploration.
Collapse
Affiliation(s)
- Tianjie Zhao
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Sheng Wang
- School of Computer Science, China University of Geosciences, Wuhan 430078, China
| | - Chaojun Ouyang
- State Key Laboratory of Mountain Hazards and Engineering Resilience, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Chen
- Key Laboratory of Virtual Geographic Environment (Ministry of Education of PRC), Nanjing Normal University, Nanjing 210023, China
| | - Chenying Liu
- Data Science in Earth Observation, Technical University of Munich, 80333 Munich, Germany
| | - Jin Zhang
- The National Key Laboratory of Water Disaster Prevention, Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China
| | - Long Yu
- School of Computer Science, China University of Geosciences, Wuhan 430078, China
| | - Fei Wang
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Xie
- School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jun Li
- School of Computer Science, China University of Geosciences, Wuhan 430078, China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemistry, Technical University of Munich, 85748 Munich, Germany
| | - Sabine Grunwald
- Soil, Water and Ecosystem Sciences Department, University of Florida, PO Box 110290, Gainesville, FL, USA
| | - Bryan M Wong
- Materials Science Engineering Program Cooperating Faculty Member in the Department of Chemistry and Department of Physics Astronomy, University of California, California, Riverside, CA 92521, USA
| | - Fan Zhang
- Institute of Remote Sensing and Geographical Information System, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Zhen Qian
- Key Laboratory of Virtual Geographic Environment (Ministry of Education of PRC), Nanjing Normal University, Nanjing 210023, China
| | - Yongjun Xu
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengqing Yu
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Han
- School of Computer Science, China University of Geosciences, Wuhan 430078, China
| | - Tao Sun
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Zezhi Shao
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tangwen Qian
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Chen
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiangyuan Zeng
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Huai Zhang
- Key Laboratory of Computational Geodynamics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Husi Letu
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Bing Zhang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Li Wang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Lei Luo
- International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
| | - Chong Shi
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Hongjun Su
- College of Geography and Remote Sensing, Hohai University, Nanjing 211100, China
| | - Hongsheng Zhang
- Department of Geography, The University of Hong Kong, Hong Kong 999077, SAR, China
| | - Shuai Yin
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Ni Huang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Wei Zhao
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Nan Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing 210044, China
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chaolei Zheng
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Yang Zhou
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Changping Huang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Defeng Feng
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingsong Xu
- Data Science in Earth Observation, Technical University of Munich, 80333 Munich, Germany
| | - Yan Wu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danfeng Hong
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenyu Wang
- Department of Catchment Hydrology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale) 06108, Germany
| | - Yinyi Lin
- Department of Geography, The University of Hong Kong, Hong Kong 999077, SAR, China
| | - Tangtang Zhang
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
- Institute for Sustainability, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Antonio Plaza
- Hyperspectral Computing Laboratory, University of Extremadura, 10003 Caceres, Spain
| | - Jocelyn Chanussot
- University Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiancheng Shi
- National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Lizhe Wang
- School of Computer Science, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
2
|
Kucik A, Stokholm A. AI4SeaIce: selecting loss functions for automated SAR sea ice concentration charting. Sci Rep 2023; 13:5962. [PMID: 37045844 PMCID: PMC10097860 DOI: 10.1038/s41598-023-32467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
For maritime navigation in the Arctic, sea ice charts are an essential tool, which still to this day is drawn manually by professional ice analysts. The total Sea Ice Concentration (SIC) is the primary descriptor of the charts and indicates the fraction of ice in an ocean surface area. Naturally, automating the SIC chart creation is desired. However, the optimal representation of the corresponding machine-learning task is ambivalent and discussed in the community. In this study, we explore the representation with either regressional or classification objectives, each with two different (weighted) loss functions: Mean Square Error and Binary Cross-Entropy, and Categorical Cross-Entropy and the Earth Mover's Distance, respectively. While all models achieve good results they differ as the regression-based models obtain the highest numerical similarity to the reference charts, whereas the classification-optimised models generate results more visually pleasing and consistent. Rescaling the loss functions with inverse class weights improves the performance for intermediate classes at the expense of open water and fully-covered sea ice areas.
Collapse
Affiliation(s)
- Andrzej Kucik
- ϕ-lab, European Space Research Institute (ESRIN), The European Space Agency (ESA), Largo Galileo Galilei, 1, 00044, Frascati, RM, Italy
| | - Andreas Stokholm
- ϕ-lab, European Space Research Institute (ESRIN), The European Space Agency (ESA), Largo Galileo Galilei, 1, 00044, Frascati, RM, Italy.
- DTU Space, National Space Institute, Technical University of Denmark, Elektrovej, Building 327, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|