1
|
A Fusion Method for Multisource Land Cover Products Based on Superpixels and Statistical Extraction for Enhancing Resolution and Improving Accuracy. REMOTE SENSING 2022. [DOI: 10.3390/rs14071676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The discrepancies in existing land cover data are relatively high, indicating low local precision and application limitations. Multisource data fusion is an effective way to solve this problem; however, the fusion procedure often requires resampling to unify the spatial resolution, causing a lower spatial resolution. To solve this problem, this study proposes a multisource product fusion mapping method of filtering training samples and product correction at a fine resolution. Based on the Superpixel algorithm, principal component analysis (PCA), and statistical extraction techniques, combined with the Google Earth Engine (GEE) platform, reliable land cover data were acquired. GEE and machine-learning algorithms correct the unreliable information of multiple products into a new land cover fusion result. Compared to the common method of extracting consistent pixels from existing products, our proposed method effectively removes nearly 38.75% of them, with a high probability of classification error. The overall accuracy of fusion in this study reached 85.80%, and the kappa coefficient reached 0.82, with an overall accuracy improvement of 11.75–24.17% and a kappa coefficient improvement of 0.16 to 0.3 compared to other products. For existing single-category products, we corrected the phenomenon of overinterpretation in inconsistent areas; the overall accuracy improvement ranged from 2.99% to 20.71%, while the kappa coefficient improvement ranged from 0.22 to 0.56. Thus, our proposed method can combine information from multiple products and serve as an effective method for large areas and even as a global land cover fusion product.
Collapse
|
2
|
A Methodology to Generate Integrated Land Cover Data for Land Surface Model by Improving Dempster-Shafer Theory. REMOTE SENSING 2022. [DOI: 10.3390/rs14040972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Land cover type is a key parameter for simulating surface processes in many land surface models (LSMs). Currently, the widely used global remote sensing land cover products cannot meet the requirements of LSMs for classification systems, physical definition, data accuracy, and space-time resolution. Here, a new fusion method was proposed to generate land cover data for LSMs by fusing multi-source remote sensing land cover data, which was based on improving Dempster-Shafer evidence theory with mathematical models and knowledge rules optimization. The new method has the ability to deal with seriously disagreement information, thereby improving the robustness of the theory. The results showed the new method can reduce the disagreement between input data and realized the conversion of multiple land cover classification systems to into a single land cover classification system. China Fusion Land Cover data (CFLC) in 2015 generated by the new method maintained the classification accuracy of the China land use map (CNLULC), which is based on visual image interpretation and further enriched land cover classes of input data. Compared with Geo-Wiki observations in 2015, the overall accuracy for CFLC is higher than other two global land cover data. Compared with the observations, the 0–10 cm soil moisture simulated by the CFLC in Noah–MP LSM during the growing season in 2014 had better performance than that simulated by initial land cover data and MODIS land cover data. Our new method is highly portable and generalizable to generate higher quality land cover data with a specific land cover classification system for LSMs by fusing multiple land cover data, providing a new approach to land cover mapping for LSMs.
Collapse
|