1
|
Wocher M, Berger K, Verrelst J, Hank T. Retrieval of carbon content and biomass from hyperspectral imagery over cultivated areas. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING : OFFICIAL PUBLICATION OF THE INTERNATIONAL SOCIETY FOR PHOTOGRAMMETRY AND REMOTE SENSING (ISPRS) 2022; 193:104-114. [PMID: 36643957 PMCID: PMC7614045 DOI: 10.1016/j.isprsjprs.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Spaceborne imaging spectroscopy is a highly promising data source for all agricultural management and research disciplines that require spatio-temporal information on crop properties. Recently launched science-driven missions, such as the Environmental Mapping and Analysis Program (EnMAP), deliver unprecedented data from the Earth's surface. This new kind of data should be explored to develop robust retrieval schemes for deriving crucial variables from future routine missions. Therefore, we present a workflow for inferring crop carbon content (Carea ), and aboveground dry and wet biomass (AGBdry , AGBfresh ) from EnMAP data. To achieve this, a hybrid workflow was generated, combining radiative transfer modeling (RTM) with machine learning regression algorithms. The key concept involves: (1) coupling the RTMs PROSPECT-PRO and 4SAIL for simulation of a wide range of vegetation states, (2) using dimensionality reduction to deal with collinearity, (3) applying a semi-supervised active learning technique against a 4-years campaign dataset, followed by (4) training of a Gaussian process regression (GPR) machine learning algorithm and (5) validation with an independent in situ dataset acquired during the ESA Hypersense experiment campaign at a German test site. Internal validation of the GPR-Carea and GPR-AGB models achieved coefficients of determination (R 2) of 0.80 for Carea and 0.80, 0.71 for AGBdry and AGBfresh , respectively. The mapping capability of these models was successfully demonstrated using airborne AVIRIS-NG hyperspectral imagery, which was spectrally resampled to EnMAP spectral properties. Plausible estimates were achieved over both bare and green fields after adding bare soil spectra to the training data. Validation over green winter wheat fields generated reliable estimates as suggested by low associated model uncertainties (< 40%). These results suggest a high degree of model reliability for cultivated areas during active growth phases at canopy closure. Overall, our proposed carbon and biomass models based on EnMAP spectral sampling demonstrate a promising path toward the inference of these crucial variables over cultivated areas from future spaceborne operational hyperspectral missions.
Collapse
Affiliation(s)
- Matthias Wocher
- Department of Geography, Ludwig-Maximilians Universität München, Munich, Germany
| | - Katja Berger
- Image Processing Laboratory (IPL), University of Valencia, Valencia, Spain
- Mantle Labs GmbH, Vienna, Austria
| | - Jochem Verrelst
- Image Processing Laboratory (IPL), University of Valencia, Valencia, Spain
| | - Tobias Hank
- Department of Geography, Ludwig-Maximilians Universität München, Munich, Germany
| |
Collapse
|
2
|
Berger K, Machwitz M, Kycko M, Kefauver SC, Van Wittenberghe S, Gerhards M, Verrelst J, Atzberger C, van der Tol C, Damm A, Rascher U, Herrmann I, Paz VS, Fahrner S, Pieruschka R, Prikaziuk E, Buchaillot ML, Halabuk A, Celesti M, Koren G, Gormus ET, Rossini M, Foerster M, Siegmann B, Abdelbaki A, Tagliabue G, Hank T, Darvishzadeh R, Aasen H, Garcia M, Pôças I, Bandopadhyay S, Sulis M, Tomelleri E, Rozenstein O, Filchev L, Stancile G, Schlerf M. Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review. REMOTE SENSING OF ENVIRONMENT 2022; 280:113198. [PMID: 36090616 PMCID: PMC7613382 DOI: 10.1016/j.rse.2022.113198] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Remote detection and monitoring of the vegetation responses to stress became relevant for sustainable agriculture. Ongoing developments in optical remote sensing technologies have provided tools to increase our understanding of stress-related physiological processes. Therefore, this study aimed to provide an overview of the main spectral technologies and retrieval approaches for detecting crop stress in agriculture. Firstly, we present integrated views on: i) biotic and abiotic stress factors, the phases of stress, and respective plant responses, and ii) the affected traits, appropriate spectral domains and corresponding methods for measuring traits remotely. Secondly, representative results of a systematic literature analysis are highlighted, identifying the current status and possible future trends in stress detection and monitoring. Distinct plant responses occurring under shortterm, medium-term or severe chronic stress exposure can be captured with remote sensing due to specific light interaction processes, such as absorption and scattering manifested in the reflected radiance, i.e. visible (VIS), near infrared (NIR), shortwave infrared, and emitted radiance, i.e. solar-induced fluorescence and thermal infrared (TIR). From the analysis of 96 research papers, the following trends can be observed: increasing usage of satellite and unmanned aerial vehicle data in parallel with a shift in methods from simpler parametric approaches towards more advanced physically-based and hybrid models. Most study designs were largely driven by sensor availability and practical economic reasons, leading to the common usage of VIS-NIR-TIR sensor combinations. The majority of reviewed studies compared stress proxies calculated from single-source sensor domains rather than using data in a synergistic way. We identified new ways forward as guidance for improved synergistic usage of spectral domains for stress detection: (1) combined acquisition of data from multiple sensors for analysing multiple stress responses simultaneously (holistic view); (2) simultaneous retrieval of plant traits combining multi-domain radiative transfer models and machine learning methods; (3) assimilation of estimated plant traits from distinct spectral domains into integrated crop growth models. As a future outlook, we recommend combining multiple remote sensing data streams into crop model assimilation schemes to build up Digital Twins of agroecosystems, which may provide the most efficient way to detect the diversity of environmental and biotic stresses and thus enable respective management decisions.
Collapse
Affiliation(s)
- Katja Berger
- Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán 2, Paterna 46980, Valencia, Spain
- Department of Geography, Ludwig-Maximilians-Universität München (LMU), Luisenstr. 37, 80333 Munich, Germany
| | - Miriam Machwitz
- Remote Sensing and Natural Resources Modelling Group, Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Marlena Kycko
- Department of Geoinformatics Cartography and Remote Sensing, Chair of Geomatics and Information Systems, Faculty of Geography and Regional Studies, University of Warsaw, 00-927 Warszawa, Poland
| | - Shawn C. Kefauver
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- AGROTECNIO (Center for Research in Agrotechnology), Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Shari Van Wittenberghe
- Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán 2, Paterna 46980, Valencia, Spain
| | - Max Gerhards
- Earth Observation and Climate Processes, Trier University, 54286 Trier, Germany
| | - Jochem Verrelst
- Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán 2, Paterna 46980, Valencia, Spain
| | - Clement Atzberger
- Institute of Geomatics, University of Natural Resources and Life Sciences, Vienna (BOKU), Peter Jordan Str. 82, 1190 Vienna, Austria
| | - Christiaan van der Tol
- Faculty Geo-Information Science and Earth Observation, ITC, University of Twente, the Netherlands
| | - Alexander Damm
- Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Uwe Rascher
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Ittai Herrmann
- The Plant Sensing Laboratory, The Robert H. Smith Institute for Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Veronica Sobejano Paz
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Sven Fahrner
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Roland Pieruschka
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Egor Prikaziuk
- Faculty Geo-Information Science and Earth Observation, ITC, University of Twente, the Netherlands
| | - Ma. Luisa Buchaillot
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- AGROTECNIO (Center for Research in Agrotechnology), Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Andrej Halabuk
- Institute of Landscape Ecology, Slovak Academy of Sciences, 814 99 Bratislava, Slovakia
| | - Marco Celesti
- HE Space for ESA - European Space Agency, European Space Research and Technology Centre (ESA-ESTEC), Keplerlaan 1, 2201, AZ Noordwijk, the Netherlands
| | - Gerbrand Koren
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, the Netherlands
| | - Esra Tunc Gormus
- Department of Geomatics Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Micol Rossini
- Remote Sensing of Environmental Dynamics Laboratory (LTDA), University of Milano - Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Michael Foerster
- Geoinformation in Environmental Planning Lab, Technische Universität Berlin, 10623 Berlin, Germany
| | - Bastian Siegmann
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Asmaa Abdelbaki
- Earth Observation and Climate Processes, Trier University, 54286 Trier, Germany
| | - Giulia Tagliabue
- Remote Sensing of Environmental Dynamics Laboratory (LTDA), University of Milano - Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Tobias Hank
- Department of Geography, Ludwig-Maximilians-Universität München (LMU), Luisenstr. 37, 80333 Munich, Germany
| | - Roshanak Darvishzadeh
- Faculty Geo-Information Science and Earth Observation, ITC, University of Twente, the Netherlands
| | - Helge Aasen
- Earth Observation and Analysis of Agroecosystems Team, Division Agroecology and Environment, Agroscope, Zurich, Switzerland
- Institute of Agricultural Science, ETH Zürich, Zurich, Switzerland
| | - Monica Garcia
- Research Centre for the Management of Agricultural and Environmental Risks (CEIGRAM), ETSIAAB, Universidad Politécnica de Madrid, 28040, Spain
| | - Isabel Pôças
- ForestWISE - Collaborative Laboratory for Integrated Forest & Fire Management, Quinta de Prados, Campus da UTAD, 5001-801 Vila Real, Portugal
| | | | - Mauro Sulis
- Remote Sensing and Natural Resources Modelling Group, Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Enrico Tomelleri
- Faculty of Science and Technology, Free University of Bozen/Bolzano, Italy
| | - Offer Rozenstein
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization—Volcani Institute, HaMaccabim Road 68, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Lachezar Filchev
- Space Research and Technology Institute, Bulgarian Academy of Sciences (SRTI-BAS), Bulgaria
| | - Gheorghe Stancile
- National Meteorological Administration, Building A, Soseaua Bucuresti-Ploiesti 97, 013686 Bucuresti, Romania
| | - Martin Schlerf
- Remote Sensing and Natural Resources Modelling Group, Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, L-4422 Belvaux, Luxembourg
| |
Collapse
|
3
|
Caballero G, Pezzola A, Winschel C, Casella A, Angonova PS, Rivera-Caicedo JP, Berger K, Verrelst J, Delegido J. Seasonal Mapping of Irrigated Winter Wheat Traits in Argentina with a Hybrid Retrieval Workflow Using Sentinel-2 Imagery. REMOTE SENSING 2022; 14:4531. [PMID: 36186714 PMCID: PMC7613660 DOI: 10.3390/rs14184531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Earth observation offers an unprecedented opportunity to monitor intensively cultivated areas providing key support to assess fertilizer needs and crop water uptake. Routinely, vegetation traits mapping can help farmers to monitor plant development along the crop's phenological cycle, which is particularly relevant for irrigated agricultural areas. The high spatial and temporal resolution of the Sentinel-2 (S2) multispectral instrument leverages the possibility to estimate leaf area index (LAI), canopy chlorophyll content (CCC), and vegetation water content (VWC) from space. Therefore, our study presents a hybrid retrieval workflow combining a physically-based strategy with a machine learning regression algorithm, i.e., Gaussian processes regression, and an active learning technique to estimate LAI, CCC and VWC of irrigated winter wheat. The established hybrid models of the three traits were validated against in-situ data of a wheat campaign in the Bonaerense valley, South of the Buenos Aires Province, Argentina, in the year 2020. We obtained good to highly accurate validation results with LAI: R2 = 0.92, RMSE = 0.43 m2 m-2, CCC: R2 = 0.80, RMSE = 0.27 g m-2 and VWC: R2 = 0.75, RMSE = 416 g m-2. The retrieval models were also applied to a series of S2 images, producing time series along the seasonal cycle, which reflected the effects of fertilizer and irrigation on crop growth. The associated uncertainties along with the obtained maps underlined the robustness of the hybrid retrieval workflow. We conclude that processing S2 imagery with optimised hybrid models allows accurate space-based crop traits mapping over large irrigated areas and thus can support agricultural management decisions.
Collapse
Affiliation(s)
- Gabriel Caballero
- Agri-Environmental Engineering, Technological University of Uruguay (UTEC), Av. Italia 6201, Montevideo 11500, Uruguay
- Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain
| | - Alejandro Pezzola
- Remote Sensing and SIG Laboratory, Hilario Ascasubi Agricultural Experimental Station, National Institute of Agricultural Technology (INTA), Hilario Ascasubi 8142, Argentina
| | - Cristina Winschel
- Remote Sensing and SIG Laboratory, Hilario Ascasubi Agricultural Experimental Station, National Institute of Agricultural Technology (INTA), Hilario Ascasubi 8142, Argentina
| | - Alejandra Casella
- Permanent Observatory of Agro-Ecosystems, Climate and Water Institute-National Agricultural Research Centre (ICyA-CNIA), National Institute of Agricultural Technology (INTA), Nicolás Repetto s/n, Hurlingham, Buenos Aires 1686, Argentina
| | - Paolo Sanchez Angonova
- Remote Sensing and SIG Laboratory, Hilario Ascasubi Agricultural Experimental Station, National Institute of Agricultural Technology (INTA), Hilario Ascasubi 8142, Argentina
| | | | - Katja Berger
- Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain
- Mantle Labs GmbH, Grünentorgasse 19/4, 1090 Vienna, Austria
| | - Jochem Verrelst
- Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain
| | - Jesus Delegido
- Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain
| |
Collapse
|
4
|
Binh NA, Hauser LT, Hoa PV, Thao GTP, An NN, Nhut HS, Phuong TA, Verrelst J. Quantifying mangrove leaf area index from Sentinel-2 imagery using hybrid models and active learning. INTERNATIONAL JOURNAL OF REMOTE SENSING 2022; 43:5636-5657. [PMID: 36386862 PMCID: PMC7613820 DOI: 10.1080/01431161.2021.2024912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/27/2021] [Indexed: 06/16/2023]
Abstract
Mangrove forests provide vital ecosystem services. The increasing threats to mangrove forest extent and fragmentation can be monitored from space. Accurate spatially explicit quantification of key vegetation characteristics of mangroves, such as leaf area index (LAI), would further advance our monitoring efforts to assess ecosystem health and functioning. Here, we investigated the potential of radiative transfer models (RTM), combined with active learning (AL), to estimate LAI from Sentinel-2 spectral reflectance in the mangrove-dominated region of Ngoc Hien, Vietnam. We validated the retrieval of LAI estimates against in-situ measurements based on hemispherical photography and compared against red-edge NDVI and the Sentinel Application Platform (SNAP) biophysical processor. Our results highlight the performance of physics-based machine learning using Gaussian processes regression (GPR) in combination with AL for the estimation of mangrove LAI. Our AL-driven hybrid GPR model substantially outperformed SNAP (R2 = 0.77 and 0.44 respectively) as well as the red-edge NDVI approach. Comparing two canopy RTMs, the highest accuracy was achieved by PROSAIL (RMSE = 0.13 m2.m-2, NRMSE = 9.57%, MAE = 0.1 m2.m-2). The successful retrieval of mangrove LAI from Sentinel-2 can overcome extensive reliance on scarce in-situ measurements for training seen in other approaches and present a more scalable applicability by relying on the universal principles of physics in combination with uncertainty estimates. AL-based GPR models using RTM simulations allow us to adapt the genericity of RTMs to the peculiarities of distinct ecosystems such as mangrove forests with limited ancillary data. These findings bode potential for retrieving a wider range of vegetation variables to quantify large-scale mangrove ecosystem dynamics in space and time.
Collapse
Affiliation(s)
- Nguyen An Binh
- Ho Chi Minh City Institute of Resources Geography, Vietnam Academy of Science and Technology, Ho Chi Minh, Vietnam
| | - Leon T. Hauser
- Department of Environmental Biology, Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Pham Viet Hoa
- Ho Chi Minh City Institute of Resources Geography, Vietnam Academy of Science and Technology, Ho Chi Minh, Vietnam
| | - Giang Thi Phuong Thao
- Ho Chi Minh City Institute of Resources Geography, Vietnam Academy of Science and Technology, Ho Chi Minh, Vietnam
| | - Nguyen Ngoc An
- Ho Chi Minh City Institute of Resources Geography, Vietnam Academy of Science and Technology, Ho Chi Minh, Vietnam
| | - Huynh Song Nhut
- Ho Chi Minh City Institute of Resources Geography, Vietnam Academy of Science and Technology, Ho Chi Minh, Vietnam
| | - Tran Anh Phuong
- Ho Chi Minh City Institute of Resources Geography, Vietnam Academy of Science and Technology, Ho Chi Minh, Vietnam
| | - Jochem Verrelst
- Image Processing Laboratory (IPL), Parc Científic, Universitat de Valéncia, Paterna, Valéncia, Spain
| |
Collapse
|
5
|
A Review of Hybrid Approaches for Quantitative Assessment of Crop Traits Using Optical Remote Sensing: Research Trends and Future Directions. REMOTE SENSING 2022. [DOI: 10.3390/rs14153515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Remote sensing technology allows to provide information about biochemical and biophysical crop traits and monitor their spatiotemporal dynamics of agriculture ecosystems. Among multiple retrieval techniques, hybrid approaches have been found to provide outstanding accuracy, for instance, for the inference of leaf area index (LAI), fractional vegetation cover (fCover), and leaf and canopy chlorophyll content (LCC and CCC). The combination of radiative transfer models (RTMs) and data-driven models creates an advantage in the use of hybrid methods. Through this review paper, we aim to provide state-of-the-art hybrid retrieval schemes and theoretical frameworks. To achieve this, we reviewed and systematically analyzed publications over the past 22 years. We identified two hybrid-based parametric and hybrid-based nonparametric regression models and evaluated their performance for each variable of interest. From the results of our extensive literature survey, most research directions are now moving towards combining RTM and machine learning (ML) methods in a symbiotic manner. In particular, the development of ML will open up new ways to integrate innovative approaches such as integrating shallow or deep neural networks with RTM using remote sensing data to reduce errors in crop trait estimations and improve control of crop growth conditions in very large areas serving precision agriculture applications.
Collapse
|
6
|
Döpper V, Rocha AD, Berger K, Gränzig T, Verrelst J, Kleinschmit B, Förster M. Estimating soil moisture content under grassland with hyperspectral data using radiative transfer modelling and machine learning. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION : ITC JOURNAL 2022; 110:102817. [PMID: 36093264 PMCID: PMC7613374 DOI: 10.1016/j.jag.2022.102817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The monitoring of soil moisture content (SMC) at very high spatial resolution (<10m) using unmanned aerial systems (UAS) is of high interest for precision agriculture and the validation of large scale SMC products. Data-driven approaches are the most common method to retrieve SMC with UAS-borne data at water limited sites over non-disturbed agricultural crops. A major disadvantage of data-driven algorithms is the limited transferability in space and time and the need of a high number of ground reference samples. Physically-based approaches are less dependent on the amount of samples and are transferable in space and time. This study explores the potential of (1) a hybrid method targeting the soil brightness factor of the PROSAIL model using a variational heteroscedastic Gaussian Processes regression (VHGPR) algorithm, and (2) a data-driven method employing VHGPR for the retrieval of SMC over three grassland sites based on UAS-borne VIS-NIR (399-1001 nm) hyperspectral data. The sites were managed by mowing (Fendt), grazing (Grosses Bruch) and irrigation (Marquardt). With these distinct local pre-conditions we aimed to identify factors that favor and limit the retrieval of SMC. The hybrid approach presented encouraging results in Marquardt (RMSE = 1.5 Vol_%, R2 = 0.2). At the permanent grassland sites (Fendt, Grosses Bruch) the thatch layer jeopardized the application of the hybrid model. We identified the complex canopy structure of grassland as the main factor impacting the hybrid SMC retrieval. The data-driven approach showed high accuracy for Fendt (R2 = 0.84, RMSE = 8.66) and Marquardt (R2 = 0.4, RMSE = 10.52). All data-driven models build on the LAI-SMC relationship. However, this relationship was hampered by mowing (Fendt), leading to a lack of transferability in time. The alteration of plant traits by grazing prevents finding a relationship with SMC in Grosses Bruch. In Marquardt, we identified the timelag between changes in SMC and plant response as the main reason of decrease in model accuracy. Yet, the model performance is accurate in undisturbed and water-limited areas (Marquardt). The analysis points to challenges that need to be tackled in future research and opens the discussion for the development of robust models to retrieve high resolution SMC from UAS-borne remote sensing observations.
Collapse
Affiliation(s)
- Veronika Döpper
- Geoinformation in Environmental Planning Lab, Technische Universität Berlin (TUB), Berlin, Germany
| | - Alby Duarte Rocha
- Geoinformation in Environmental Planning Lab, Technische Universität Berlin (TUB), Berlin, Germany
| | - Katja Berger
- Department of Geography, Ludwig-Maximilians-Universität München (LMU), Munich, Munich, Germany
- Image Processing Laboratory (IPL), Universitat de València, València, Spain
| | - Tobias Gränzig
- Geoinformation in Environmental Planning Lab, Technische Universität Berlin (TUB), Berlin, Germany
| | - Jochem Verrelst
- Image Processing Laboratory (IPL), Universitat de València, València, Spain
| | - Birgit Kleinschmit
- Geoinformation in Environmental Planning Lab, Technische Universität Berlin (TUB), Berlin, Germany
| | - Michael Förster
- Geoinformation in Environmental Planning Lab, Technische Universität Berlin (TUB), Berlin, Germany
| |
Collapse
|
7
|
Pascual-Venteo AB, Portalés E, Berger K, Tagliabue G, Garcia JL, Pérez-Suay A, Rivera-Caicedo JP, Verrelst J. Prototyping Crop Traits Retrieval Models for CHIME: Dimensionality Reduction Strategies Applied to PRISMA Data. REMOTE SENSING 2022; 14:2448. [PMID: 36017157 PMCID: PMC7613375 DOI: 10.3390/rs14102448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In preparation for new-generation imaging spectrometer missions and the accompanying unprecedented inflow of hyperspectral data, optimized models are needed to generate vegetation traits routinely. Hybrid models, combining radiative transfer models with machine learning algorithms, are preferred, however, dealing with spectral collinearity imposes an additional challenge. In this study, we analyzed two spectral dimensionality reduction methods: principal component analysis (PCA) and band ranking (BR), embedded in a hybrid workflow for the retrieval of specific leaf area (SLA), leaf area index (LAI), canopy water content (CWC), canopy chlorophyll content (CCC), the fraction of absorbed photosynthetic active radiation (FAPAR), and fractional vegetation cover (FVC). The SCOPE model was used to simulate training data sets, which were optimized with active learning. Gaussian process regression (GPR) algorithms were trained over the simulations to obtain trait-specific models. The inclusion of PCA and BR with 20 features led to the so-called GPR-20PCA and GPR-20BR models. The 20PCA models encompassed over 99.95% cumulative variance of the full spectral data, while the GPR-20BR models were based on the 20 most sensitive bands. Validation against in situ data obtained moderate to optimal results with normalized root mean squared error (NRMSE) from 13.9% (CWC) to 22.3% (CCC) for GPR-20PCA models, and NRMSE from 19.6% (CWC) to 29.1% (SLA) for GPR-20BR models. Overall, the GPR-20PCA slightly outperformed the GPR-20BR models for all six variables. To demonstrate mapping capabilities, both models were tested on a PRecursore IperSpettrale della Missione Applicativa (PRISMA) scene, spectrally resampled to Copernicus Hyperspectral Imaging Mission for the Environment (CHIME), over an agricultural test site (Jolanda di Savoia, Italy). The two strategies obtained plausible spatial patterns, and consistency between the two models was highest for FVC and LAI (R 2 = 0.91, R 2 = 0.86) and lowest for SLA mapping (R 2 = 0.53). From these findings, we recommend implementing GPR-20PCA models as the most efficient strategy for the retrieval of multiple crop traits from hyperspectral data streams. Hence, this workflow will support and facilitate the preparations of traits retrieval models from the next-generation operational CHIME.
Collapse
Affiliation(s)
- Ana B. Pascual-Venteo
- Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltran 2, 46980 Paterna, Valencia, Spain
| | - Enrique Portalés
- Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltran 2, 46980 Paterna, Valencia, Spain
| | - Katja Berger
- Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltran 2, 46980 Paterna, Valencia, Spain
- Department of Geography, Ludwig-Maximilians-Universität München (LMU), Luisenstr. 37, 80333 Munich, Germany
| | - Giulia Tagliabue
- Remote Sensing of Environmental Dynamics Laboratory (LTDA), University of Milano—Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Jose L. Garcia
- Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltran 2, 46980 Paterna, Valencia, Spain
| | - Adrián Pérez-Suay
- Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltran 2, 46980 Paterna, Valencia, Spain
| | - Juan Pablo Rivera-Caicedo
- Secretary of Research and Graduate Studies, Consejo Nacional de Ciencia y Tecnología, Universidad Autónoma de Nayarit, Tepic 63155, Nayarit, Mexico
| | - Jochem Verrelst
- Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltran 2, 46980 Paterna, Valencia, Spain
| |
Collapse
|
8
|
Estévez J, Salinero-Delgado M, Berger K, Pipia L, Rivera-Caicedo JP, Wocher M, Reyes-Muñoz P, Tagliabue G, Boschetti M, Verrelst J. Gaussian processes retrieval of crop traits in Google Earth Engine based on Sentinel-2 top-of-atmosphere data. REMOTE SENSING OF ENVIRONMENT 2022; 273:112958. [PMID: 36081832 PMCID: PMC7613387 DOI: 10.1016/j.rse.2022.112958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The unprecedented availability of optical satellite data in cloud-based computing platforms, such as Google Earth Engine (GEE), opens new possibilities to develop crop trait retrieval models from the local to the planetary scale. Hybrid retrieval models are of interest to run in these platforms as they combine the advantages of physically- based radiative transfer models (RTM) with the flexibility of machine learning regression algorithms. Previous research with GEE primarily relied on processing bottom-of-atmosphere (BOA) reflectance data, which requires atmospheric correction. In the present study, we implemented hybrid models directly into GEE for processing Sentinel-2 (S2) Level-1C (L1C) top-of-atmosphere (TOA) reflectance data into crop traits. To achieve this, a training dataset was generated using the leaf-canopy RTM PROSAIL in combination with the atmospheric model 6SV. Gaussian process regression (GPR) retrieval models were then established for eight essential crop traits namely leaf chlorophyll content, leaf water content, leaf dry matter content, fractional vegetation cover, leaf area index (LAI), and upscaled leaf variables (i.e., canopy chlorophyll content, canopy water content and canopy dry matter content). An important pre-requisite for implementation into GEE is that the models are sufficiently light in order to facilitate efficient and fast processing. Successful reduction of the training dataset by 78% was achieved using the active learning technique Euclidean distance-based diversity (EBD). With the EBD-GPR models, highly accurate validation results of LAI and upscaled leaf variables were obtained against in situ field data from the validation study site Munich-North-Isar (MNI), with normalized root mean square errors (NRMSE) from 6% to 13%. Using an independent validation dataset of similar crop types (Italian Grosseto test site), the retrieval models showed moderate to good performances for canopy-level variables, with NRMSE ranging from 14% to 50%, but failed for the leaf-level estimates. Obtained maps over the MNI site were further compared against Sentinel-2 Level 2 Prototype Processor (SL2P) vegetation estimates generated from the ESA Sentinels' Application Platform (SNAP) Biophysical Processor, proving high consistency of both retrievals (R 2 from 0.80 to 0.94). Finally, thanks to the seamless GEE processing capability, the TOA-based mapping was applied over the entirety of Germany at 20 m spatial resolution including information about prediction uncertainty. The obtained maps provided confidence of the developed EBD-GPR retrieval models for integration in the GEE framework and national scale mapping from S2-L1C imagery. In summary, the proposed retrieval workflow demonstrates the possibility of routine processing of S2 TOA data into crop traits maps at any place on Earth as required for operational agricultural applications.
Collapse
Affiliation(s)
- José Estévez
- Image Processing Laboratory (IPL), Universitat de València, C/Catedrático José Beltrán, 2, 46980 Paterna, València, Spain
| | - Matías Salinero-Delgado
- Image Processing Laboratory (IPL), Universitat de València, C/Catedrático José Beltrán, 2, 46980 Paterna, València, Spain
| | - Katja Berger
- Image Processing Laboratory (IPL), Universitat de València, C/Catedrático José Beltrán, 2, 46980 Paterna, València, Spain
- Ludwig-Maximilians-Universität München, Munich (LMU), Department of Geography, Luisenstr. 37, 80333 Munich, Germany
| | - Luca Pipia
- Institut Cartogràfic i Geològic de Catalunya (ICGC), Parc de Montjüic, 08038 Barcelona, Spain
| | | | - Matthias Wocher
- Ludwig-Maximilians-Universität München, Munich (LMU), Department of Geography, Luisenstr. 37, 80333 Munich, Germany
| | - Pablo Reyes-Muñoz
- Image Processing Laboratory (IPL), Universitat de València, C/Catedrático José Beltrán, 2, 46980 Paterna, València, Spain
| | - Giulia Tagliabue
- Remote Sensing of Environmental Dynamics Laboratory, University of Milano - Bicocca, Milano, Italy
| | - Mirco Boschetti
- Institute for Electromagnetic Sensing of the Environment, National Research Council of Italy, via Bassini 15, 20133 Milano, Italy
| | - Jochem Verrelst
- Image Processing Laboratory (IPL), Universitat de València, C/Catedrático José Beltrán, 2, 46980 Paterna, València, Spain
| |
Collapse
|
9
|
Tagliabue G, Boschetti M, Bramati G, Candiani G, Colombo R, Nutini F, Pompilio L, Rivera-Caicedo JP, Rossi M, Rossini M, Verrelst J, Panigada C. Hybrid retrieval of crop traits from multi-temporal PRISMA hyperspectral imagery. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING : OFFICIAL PUBLICATION OF THE INTERNATIONAL SOCIETY FOR PHOTOGRAMMETRY AND REMOTE SENSING (ISPRS) 2022; 187:362-377. [PMID: 36093126 PMCID: PMC7613384 DOI: 10.1016/j.isprsjprs.2022.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The recently launched and upcoming hyperspectral satellite missions, featuring contiguous visible-to-shortwave infrared spectral information, are opening unprecedented opportunities for the retrieval of a broad set of vegetation traits with enhanced accuracy through novel retrieval schemes. In this framework, we exploited hyperspectral data cubes collected by the new-generation PRecursore IperSpettrale della Missione Applicativa (PRISMA) satellite of the Italian Space Agency to develop and test a hybrid retrieval workflow for crop trait mapping. Crop traits were mapped over an agricultural area in north-east Italy (Jolanda di Savoia, FE) using PRISMA images collected during the 2020 and 2021 vegetative seasons. Leaf chlorophyll content, leaf nitrogen content, leaf water content and the corresponding canopy level traits scaled through leaf area index were estimated using a hybrid retrieval scheme based on PROSAIL-PRO radiative transfer simulations coupled with a Gaussian processes regression algorithm. Active learning algorithms were used to optimise the initial set of simulated data by extracting only the most informative samples. The accuracy of the proposed retrieval scheme was evaluated against a broad ground dataset collected in 2020 in correspondence of three PRISMA overpasses. The results obtained were positive for all the investigated variables. At the leaf level, the highest accuracy was obtained for leaf nitrogen content (LNC: r2=0.87, nRMSE=7.5%), while slightly worse results were achieved for leaf chlorophyll content (LCC: r2=0.67, nRMSE=11.7%) and leaf water content (LWC: r2=0.63, nRMSE=17.1%). At the canopy level, a significantly higher accuracy was observed for nitrogen content (CNC: r2=0.92, nRMSE=5.5%) and chlorophyll content (CCC: r2=0.82, nRMSE=10.2%), whereas comparable results were obtained for water content (CWC: r2=0.61, nRMSE=16%). The developed models were additionally tested against an independent dataset collected in 2021 to evaluate their robustness and exportability. The results obtained (i. e., LCC: r2=0.62, nRMSE=27.9%; LNC: r2=0.35, nRMSE=28.4%; LWC: r2=0.74, nRMSE=20.4%; LAI: r2=0.84, nRMSE=14.5%; CCC: r2=0.79, nRMSE=18.5%; CNC: r2=0.62, nRMSE=23.7%; CWC: r2=0.92, nRMSE=16.6%) evidence the transferability of the hybrid approach optimised through active learning for most of the investigated traits. The developed models were then used to map the spatial and temporal variability of the crop traits from the PRISMA images. The high accuracy and consistency of the results demonstrates the potential of spaceborne imaging spectroscopy for crop monitoring, paving the path towards routine retrievals of multiple crop traits over large areas that could drive more effective and sustainable agricultural practices worldwide.
Collapse
Affiliation(s)
- Giulia Tagliabue
- Remote Sensing of Environmental Dynamics Laboratory, University of Milano - Bicocca, Milan, Italy
| | - Mirco Boschetti
- Institute for Electromagnetic Sensing of the Environment, National Research Council, Milan, Italy
| | - Gabriele Bramati
- Remote Sensing of Environmental Dynamics Laboratory, University of Milano - Bicocca, Milan, Italy
| | - Gabriele Candiani
- Institute for Electromagnetic Sensing of the Environment, National Research Council, Milan, Italy
| | - Roberto Colombo
- Remote Sensing of Environmental Dynamics Laboratory, University of Milano - Bicocca, Milan, Italy
| | - Francesco Nutini
- Institute for Electromagnetic Sensing of the Environment, National Research Council, Milan, Italy
| | - Loredana Pompilio
- Institute for Electromagnetic Sensing of the Environment, National Research Council, Milan, Italy
| | | | - Marta Rossi
- Remote Sensing of Environmental Dynamics Laboratory, University of Milano - Bicocca, Milan, Italy
| | - Micol Rossini
- Remote Sensing of Environmental Dynamics Laboratory, University of Milano - Bicocca, Milan, Italy
| | - Jochem Verrelst
- Image Processing Laboratory, University of Valencia, Valencia, Spain
| | - Cinzia Panigada
- Remote Sensing of Environmental Dynamics Laboratory, University of Milano - Bicocca, Milan, Italy
| |
Collapse
|
10
|
Linking Land Use and Plant Functional Diversity Patterns in Sabah, Borneo, through Large-Scale Spatially Continuous Sentinel-2 Inference. LAND 2022. [DOI: 10.3390/land11040572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Global biodiversity losses erode the functioning of our vital ecosystems. Functional diversity is increasingly recognized as a critical link between biodiversity and ecosystem functioning. Satellite earth observation was proposed to address the current absence of information on large-scale continuous patterns of plant functional diversity. This study demonstrates the inference and spatial mapping of functional diversity metrics through satellite remote sensing over a large key biodiversity region (Sabah, Malaysian Borneo, ~53,000 km2) and compares the derived estimates across a land-use gradient as an initial qualitative assessment to test the potential merits of the approach. Functional traits (leaf water content, chlorophyll-a and -b, and leaf area index) were estimated from Sentinel-2 spectral reflectance using a pre-trained neural network on radiative transfer modeling simulations. Multivariate functional diversity metrics were calculated, including functional richness, divergence, and evenness. Spatial patterns of functional diversity were related to land-use data distinguishing intact forest, logged forest, and oil palm plantations. Spatial patterns of satellite remotely sensed functional diversity are significantly related to differences in land use. Intact forests, as well as logged forests, featured consistently higher functional diversity compared to oil palm plantations. Differences were profound for functional divergence, whereas functional richness exhibited relatively large variances within land-use classes. By linking large-scale patterns of functional diversity as derived from satellite remote sensing to land-use information, this study indicated initial responsiveness to broad human disturbance gradients over large geographical and spatially contiguous extents. Despite uncertainties about the accuracy of the spatial patterns, this study provides a coherent early application of satellite-derived functional diversity toward further validation of its responsiveness across ecological gradients.
Collapse
|
11
|
Candiani G, Tagliabue G, Panigada C, Verrelst J, Picchi V, Caicedo JPR, Boschetti M. Evaluation of Hybrid Models to Estimate Chlorophyll and Nitrogen Content of Maize Crops in the Framework of the Future CHIME Mission. REMOTE SENSING 2022; 14:1792. [PMID: 36081596 PMCID: PMC7613389 DOI: 10.3390/rs14081792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the next few years, the new Copernicus Hyperspectral Imaging Mission (CHIME) is foreseen to be launched by the European Space Agency (ESA). This missions will provide an unprecedented amount of hyperspectral data, enabling new research possibilities within several fields of natural resources, including the "agriculture and food security" domain. In order to efficiently exploit this upcoming hyperspectral data stream, new processing methods and techniques need to be studied and implemented. In this work, the hybrid approach (HYB) and its variant, featuring sampling dimensionality reduction through active learning heuristics (HAL), were applied to CHIME-like data to evaluate the retrieval of crop traits, such as chlorophyll and nitrogen content at both leaf (LCC and LNC) and canopy level (CCC and CNC). The results showed that HYB was able to provide reliable estimations at canopy level (R2 = 0.79, RMSE = 0.38 g m-2 for CCC and R2 = 0.84, RMSE = 1.10 g m-2 for CNC) but failed at leaf level. The HAL approach improved retrieval accuracy at canopy level (best metric: R2 = 0.88 and RMSE = 0.21 g m-2 for CCC; R2 = 0.93 and RMSE = 0.71 g m-2 for CNC), providing good results also at leaf level (best metrics: R2 = 0.72 and RMSE = 3.31 μg cm-2 for LCC; R2 = 0.56 and RMSE = 0.02 mg cm-2 for LNC). The promising results obtained through the hybrid approach support the feasibility of an operational retrieval of chlorophyll and nitrogen content, e.g., in the framework of the future CHIME mission. However, further efforts are required to investigate the approach across different years, sites and crop types in order to improve its transferability to other contexts.
Collapse
Affiliation(s)
- Gabriele Candiani
- Institute for Electromagnetic Sensing of the Environment, National Research Council, 20133 Milan, Italy
| | - Giulia Tagliabue
- Remote Sensing of Environmental Dynamics Laboratory, University of Milano-Bicocca, 20126 Milan, Italy
| | - Cinzia Panigada
- Remote Sensing of Environmental Dynamics Laboratory, University of Milano-Bicocca, 20126 Milan, Italy
| | - Jochem Verrelst
- Image Processing Laboratory, University of València, 46980 València, Spain
| | - Valentina Picchi
- Research Centre for Engineering and Agro-Food Processing, Council for Agricultural Research and Economics, 20133 Milan, Italy
| | | | - Mirco Boschetti
- Institute for Electromagnetic Sensing of the Environment, National Research Council, 20133 Milan, Italy
| |
Collapse
|
12
|
Quantification of Grassland Biomass and Nitrogen Content through UAV Hyperspectral Imagery—Active Sample Selection for Model Transfer. DRONES 2022. [DOI: 10.3390/drones6030073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Accurate retrieval of grassland traits is important to support management of pasture production and phenotyping studies. In general, conventional methods used to measure forage yield and quality rely on costly destructive sampling and laboratory analysis, which is often not viable in practical applications. Optical imaging systems carried as payload in Unmanned Aerial Vehicles (UAVs) platforms have increasingly been proposed as alternative non-destructive solutions for crop characterization and monitoring. The vegetation spectral response in the visible and near-infrared wavelengths provides information on many aspects of its composition and structure. Combining spectral measurements and multivariate modelling approaches it is possible to represent the often complex relationship between canopy reflectance and specific plant traits. However, empirical models are limited and strictly represent characteristics of the observations used during model training, therefore having low generalization potential. A method to mitigate this issue consists of adding informative samples from the target domain (i.e., new observations) to the training dataset. This approach searches for a compromise between representing the variability in new data and selecting only a minimal number of additional samples for calibration transfer. In this study, a method to actively choose new training samples based on their spectral diversity and prediction uncertainty was implemented and tested using a multi-annual dataset. Accurate predictions were obtained using hyperspectral imagery and linear multivariate models (Partial Least Squares Regression—PLSR) for grassland dry matter (DM; R2 = 0.92, RMSE = 3.25 dt ha−1), nitrogen (N) content in % of DM (R2 = 0.58, RMSE = 0.27%) and N-uptake (R2 = 0.91, RMSE = 6.50 kg ha−1). In addition, the number of samples from the target dates added to the training dataset could be reduced by up to 77% and 74% for DM and N-related traits, respectively, after model transfer. Despite this reduction, RMSE values for optimal transfer sets (identified after validation and used as benchmark) were only 20–30% lower than those values obtained after model transfer based on prediction uncertainty reduction, indicating that loss of accuracy was relatively small. These results demonstrate that considerably simple approaches based on UAV hyperspectral data can be applied in preliminary grassland monitoring frameworks, even with limited datasets.
Collapse
|
13
|
Reyes-Muñoz P, Pipia L, Salinero-Delgado M, Belda S, Berger K, Estévez J, Morata M, Rivera-Caicedo JP, Verrelst J. Quantifying Fundamental Vegetation Traits over Europe Using the Sentinel-3 OLCI Catalogue in Google Earth Engine. REMOTE SENSING 2022; 14:1347. [PMID: 36016907 PMCID: PMC7613398 DOI: 10.3390/rs14061347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Thanks to the emergence of cloud-computing platforms and the ability of machine learning methods to solve prediction problems efficiently, this work presents a workflow to automate spatiotemporal mapping of essential vegetation traits from Sentinel-3 (S3) imagery. The traits included leaf chlorophyll content (LCC), leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FAPAR), and fractional vegetation cover (FVC), being fundamental for assessing photosynthetic activity on Earth. The workflow involved Gaussian process regression (GPR) algorithms trained on top-of-atmosphere (TOA) radiance simulations generated by the coupled canopy radiative transfer model (RTM) SCOPE and the atmospheric RTM 6SV. The retrieval models, named to S3-TOA-GPR-1.0, were directly implemented in Google Earth Engine (GEE) to enable the quantification of the traits from TOA data as acquired from the S3 Ocean and Land Colour Instrument (OLCI) sensor.Following good to high theoretical validation results with normalized root mean square error (NRMSE) ranging from 5% (FAPAR) to 19% (LAI), a three fold evaluation approach over diverse sites and land cover types was pursued: (1) temporal comparison against LAI and FAPAR products obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) for the time window 2016-2020, (2) spatial difference mapping with Copernicus Global Land Service (CGLS) estimates, and (3) direct validation using interpolated in situ data from the VALERI network. For all three approaches, promising results were achieved. Selected sites demonstrated coherent seasonal patterns compared to LAI and FAPAR MODIS products, with differences between spatially averaged temporal patterns of only 6.59%. In respect of the spatial mapping comparison, estimates provided by the S3-TOA-GPR-1.0 models indicated highest consistency with FVC and FAPAR CGLS products. Moreover, the direct validation of our S3-TOA-GPR-1.0 models against VALERI estimates indicated with regard to jurisdictional claims in good retrieval performance for LAI, FAPAR and FVC. We conclude that our retrieval workflow of spatiotemporal S3 TOA data processing into GEE opens the path towards global monitoring of fundamental vegetation traits, accessible to the whole research community.
Collapse
Affiliation(s)
- Pablo Reyes-Muñoz
- Image Processing Laboratory (IPL), University of Valencia, 46980 Paterna, Spain
| | - Luca Pipia
- Institut Cartografic i Geologic de Catalunya (ICGC), Parc de Montjüic, 08038 Barcelona, Spain
| | | | - Santiago Belda
- Image Processing Laboratory (IPL), University of Valencia, 46980 Paterna, Spain
- Department of Applied Mathematics, University of Alicante, 03690 Alicante, Spain
| | - Katja Berger
- Image Processing Laboratory (IPL), University of Valencia, 46980 Paterna, Spain
- Department of Geography, Ludwig-Maximilians-Universität München (LMU), Luisenstr. 37, 80333 Munich, Germany
| | - José Estévez
- Image Processing Laboratory (IPL), University of Valencia, 46980 Paterna, Spain
| | - Miguel Morata
- Image Processing Laboratory (IPL), University of Valencia, 46980 Paterna, Spain
| | | | - Jochem Verrelst
- Image Processing Laboratory (IPL), University of Valencia, 46980 Paterna, Spain
| |
Collapse
|
14
|
Detection of Invasive Black Locust (Robinia pseudoacacia) in Small Woody Features Using Spatiotemporal Compositing of Sentinel-2 Data. REMOTE SENSING 2022. [DOI: 10.3390/rs14040971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recognition of invasive species and their distribution is key for managing and protecting native species within both natural and man-made ecosystems. Small woody features (SWF) represent fragmented patches or narrow linear tree features that are of high importance in intensively utilized agricultural landscapes. Simultaneously, they frequently serve as expansion pathways for invasive species such as black locust. In this study, Sentinel-2 products, combined with spatiotemporal compositing approaches, are used to address the challenge of broad area black locust mapping at a high granularity. This is accomplished by conducting a comprehensive analysis of the classification performance of various compositing approaches and multitemporal classification settings throughout four vegetation seasons. The annual, seasonal (bi-monthly), and monthly median values of cloud-masked Sentinel-2 reflectance products are aggregated and stacked into varied time-series datasets per given year. The random forest algorithm is trained and output classification maps validated based on field-based reference datasets across Danubian lowlands (Slovakia). The main results of the study proved the usefulness of spatiotemporal compositing of Sentinel-2 products for mapping black locust in small woody features across wide area. In particular, temporally aggregated monthly composites stacked to seasonal time series datasets yielded consistently high overall accuracies ranging from 89.10% to 91.47% with balanced producer’s and user’s accuracies for each year’s annual series. We presume that a similar approach could be used for a broader scale species distribution mapping, assuming they are spectrally or phenologically distinctive, as is often the case for many invasive species.
Collapse
|
15
|
Salinero-Delgado M, Estévez J, Pipia L, Belda S, Berger K, Gómez VP, Verrelst J. Monitoring Cropland Phenology on Google Earth Engine Using Gaussian Process Regression. REMOTE SENSING 2021; 14:146. [PMID: 36081813 PMCID: PMC7613380 DOI: 10.3390/rs14010146] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Monitoring cropland phenology from optical satellite data remains a challenging task due to the influence of clouds and atmospheric artifacts. Therefore, measures need to be taken to overcome these challenges and gain better knowledge of crop dynamics. The arrival of cloud computing platforms such as Google Earth Engine (GEE) has enabled us to propose a Sentinel-2 (S2) phenology end-to-end processing chain. To achieve this, the following pipeline was implemented: (1) the building of hybrid Gaussian Process Regression (GPR) retrieval models of crop traits optimized with active learning, (2) implementation of these models on GEE (3) generation of spatiotemporally continuous maps and time series of these crop traits with the use of gap-filling through GPR fitting, and finally, (4) calculation of land surface phenology (LSP) metrics such as the start of season (SOS) or end of season (EOS). Overall, from good to high performance was achieved, in particular for the estimation of canopy-level traits such as leaf area index (LAI) and canopy chlorophyll content, with normalized root mean square errors (NRMSE) of 9% and 10%, respectively. By means of the GPR gap-filling time series of S2, entire tiles were reconstructed, and resulting maps were demonstrated over an agricultural area in Castile and Leon, Spain, where crop calendar data were available to assess the validity of LSP metrics derived from crop traits. In addition, phenology derived from the normalized difference vegetation index (NDVI) was used as reference. NDVI not only proved to be a robust indicator for the calculation of LSP metrics, but also served to demonstrate the good phenology quality of the quantitative trait products. Thanks to the GEE framework, the proposed workflow can be realized anywhere in the world and for any time window, thus representing a shift in the satellite data processing paradigm. We anticipate that the produced LSP metrics can provide meaningful insights into crop seasonal patterns in a changing environment that demands adaptive agricultural production.
Collapse
Affiliation(s)
- Matías Salinero-Delgado
- Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain
| | - José Estévez
- Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain
| | - Luca Pipia
- Institut Cartogràfic i Geològic de Catalunya (ICGC), Parc de Montjüic, 08038 Barcelona, Spain
| | - Santiago Belda
- Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain
| | - Katja Berger
- Department of Geography, Ludwig-Maximilians-Universität München (LMU), Luisenstr. 37, 80333 Munich, Germany
| | - Vanessa Paredes Gómez
- ITACYL, Agrotechnological Institute of Castile and León, Junta de Castilla y León, Ctra. de Burgos, km. 119, 47071 Valladolid, Spain
| | - Jochem Verrelst
- Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain
| |
Collapse
|
16
|
Berger K, Hank T, Halabuk A, Rivera-Caicedo JP, Wocher M, Mojses M, Gerhátová K, Tagliabue G, Dolz MM, Venteo ABP, Verrelst J. Assessing Non-Photosynthetic Cropland Biomass from Spaceborne Hyperspectral Imagery. REMOTE SENSING 2021; 13:4711. [PMID: 36082004 PMCID: PMC7613388 DOI: 10.3390/rs13224711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Non-photosynthetic vegetation (NPV) biomass has been identified as a priority variable for upcoming spaceborne imaging spectroscopy missions, calling for a quantitative estimation of lignocellulosic plant material as opposed to the sole indication of surface coverage. Therefore, we propose a hybrid model for the retrieval of non-photosynthetic cropland biomass. The workflow included coupling the leaf optical model PROSPECT-PRO with the canopy reflectance model 4SAIL, which allowed us to simulate NPV biomass from carbon-based constituents (CBC) and leaf area index (LAI). PROSAIL-PRO provided a training database for a Gaussian process regression (GPR) algorithm, simulating a wide range of non-photosynthetic vegetation states. Active learning was employed to reduce and optimize the training data set. In addition, we applied spectral dimensionality reduction to condense essential information of non-photosynthetic signals. The resulting NPV-GPR model was successfully validated against soybean field data with normalized root mean square error (nRMSE) of 13.4% and a coefficient of determination (R2) of 0.85. To demonstrate mapping capability, the NPV-GPR model was tested on a PRISMA hyperspectral image acquired over agricultural areas in the North of Munich, Germany. Reliable estimates were mainly achieved over senescent vegetation areas as suggested by model uncertainties. The proposed workflow is the first step towards the quantification of non-photosynthetic cropland biomass as a next-generation product from near-term operational missions, such as CHIME.
Collapse
Affiliation(s)
- Katja Berger
- Department of Geography, Ludwig-Maximilians-Universitat Munchen (LMU), Luisenstr. 37, 80333 Munich, Germany
| | - Tobias Hank
- Department of Geography, Ludwig-Maximilians-Universitat Munchen (LMU), Luisenstr. 37, 80333 Munich, Germany
| | - Andrej Halabuk
- Institute of Landscape Ecology, Slovak Academy of Sciences, Branch Nitra, 949 01 Nitra, Slovakia
| | | | - Matthias Wocher
- Department of Geography, Ludwig-Maximilians-Universitat Munchen (LMU), Luisenstr. 37, 80333 Munich, Germany
| | - Matej Mojses
- Institute of Landscape Ecology, Slovak Academy of Sciences, Branch Nitra, 949 01 Nitra, Slovakia
| | - Katarina Gerhátová
- Institute of Landscape Ecology, Slovak Academy of Sciences, Branch Nitra, 949 01 Nitra, Slovakia
| | - Giulia Tagliabue
- Remote Sensing of Environmental Dynamics Lab, University Milano-Bicocca, 20126 Milano, Italy
| | - Miguel Morata Dolz
- Image Processing Laboratory (IPL), Parc Cientific, Universitat de Valencia, 46980 Paterna, Spain
| | - Ana Belen Pascual Venteo
- Image Processing Laboratory (IPL), Parc Cientific, Universitat de Valencia, 46980 Paterna, Spain
| | - Jochem Verrelst
- Image Processing Laboratory (IPL), Parc Cientific, Universitat de Valencia, 46980 Paterna, Spain
| |
Collapse
|
17
|
Machwitz M, Pieruschka R, Berger K, Schlerf M, Aasen H, Fahrner S, Jiménez-Berni J, Baret F, Rascher U. Bridging the Gap Between Remote Sensing and Plant Phenotyping-Challenges and Opportunities for the Next Generation of Sustainable Agriculture. FRONTIERS IN PLANT SCIENCE 2021; 12:749374. [PMID: 34751225 PMCID: PMC8571019 DOI: 10.3389/fpls.2021.749374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/27/2021] [Indexed: 05/27/2023]
Affiliation(s)
- Miriam Machwitz
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Belval, Luxembourg
| | - Roland Pieruschka
- Institute of Bio and Geosciences, Plant Sciences, Forschungszentrum Jülich, Helmholtz-Verband Deutscher Forschungszentren, Jülich, Germany
| | - Katja Berger
- Department of Geography, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Schlerf
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Belval, Luxembourg
| | - Helge Aasen
- Department of Environmental Systems Science, Crop Science, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Sven Fahrner
- Institute of Bio and Geosciences, Plant Sciences, Forschungszentrum Jülich, Helmholtz-Verband Deutscher Forschungszentren, Jülich, Germany
| | - Jose Jiménez-Berni
- Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Cordoba, Spain
| | | | - Uwe Rascher
- Forschungszentrum Jülich, Institute of Bio- and Geosciences Plant Sciences (IBG-2), Jülich, Germany
| |
Collapse
|
18
|
Verrelst J, Rivera-Caicedo JP, Reyes-Muñoz P, Morata M, Amin E, Tagliabue G, Panigada C, Hank T, Berger K. Mapping landscape canopy nitrogen content from space using PRISMA data. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING : OFFICIAL PUBLICATION OF THE INTERNATIONAL SOCIETY FOR PHOTOGRAMMETRY AND REMOTE SENSING (ISPRS) 2021; 178:382-395. [PMID: 36203652 PMCID: PMC7613373 DOI: 10.1016/j.isprsjprs.2021.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Satellite imaging spectroscopy for terrestrial applications is reaching maturity with recently launched and upcoming science-driven missions, e.g. PRecursore IperSpettrale della Missione Applicativa (PRISMA) and Environmental Mapping and Analysis Program (EnMAP), respectively. Moreover, the high-priority mission candidate Copernicus Hyperspectral Imaging Mission for the Environment (CHIME) is expected to globally provide routine hyperspectral observations to support new and enhanced services for, among others, sustainable agricultural and biodiversity management. Thanks to the provision of contiguous visible-to-shortwave infrared spectral data, hyperspectral missions open enhanced opportunities for the development of new-generation retrieval models of multiple vegetation traits. Among these, canopy nitrogen content (CNC) is one of the most promising variables given its importance for agricultural monitoring applications. This work presents the first hybrid CNC retrieval model for the operational delivery from spaceborne imaging spectroscopy data. To achieve this, physically-based models were combined with machine learning regression algorithms and active learning (AL). The key concepts involve: (1) coupling the radiative transfer models PROSPECT-PRO and SAIL for the generation of a wide range of vegetation states as training data, (2) using dimensionality reduction to deal with collinearity, (3) applying an AL technique in combination with Gaussian process regression (GPR) for fine-tuning the training dataset on in field collected data, and (4) adding non-vegetated spectra to enable the model to deal with spectral heterogeneity in the image. The final CNC model was successfully validated against field data achieving a low root mean square error (RMSE) of 3.4 g/m2 and coefficient of determination (R 2) of 0.7. The model was applied to a PRISMA image acquired over agricultural areas in the North of Munich, Germany. Mapping aboveground CNC yielded reliable estimates over the whole landscape and meaningful associated uncertainties. These promising results demonstrate the feasibility of routinely quantifying CNC from space, such as in an operational context as part of the future CHIME mission.
Collapse
Affiliation(s)
- Jochem Verrelst
- Image Processing Laboratory (IPL), Parc Científic, Universitat de València, València, Spain
- Corresponding author. (J. Verrelst)
| | | | - Pablo Reyes-Muñoz
- Image Processing Laboratory (IPL), Parc Científic, Universitat de València, València, Spain
| | - Miguel Morata
- Image Processing Laboratory (IPL), Parc Científic, Universitat de València, València, Spain
| | - Eatidal Amin
- Image Processing Laboratory (IPL), Parc Científic, Universitat de València, València, Spain
| | - Giulia Tagliabue
- Remote Sensing of Environmental Dynamics Laboratory, University of Milano - Bicocca, Milano, Italy
| | - Cinzia Panigada
- Remote Sensing of Environmental Dynamics Laboratory, University of Milano - Bicocca, Milano, Italy
| | - Tobias Hank
- Department of Geography, Ludwig-Maximilians-Universitaet Munich, Munich, Germany
| | - Katja Berger
- Department of Geography, Ludwig-Maximilians-Universitaet Munich, Munich, Germany
| |
Collapse
|
19
|
Abstract
The inference of functional vegetation traits from remotely sensed signals is key to providing efficient information for multiple plant-based applications and to solve related problems [...]
Collapse
|
20
|
Estévez J, Berger K, Vicent J, Rivera-Caicedo JP, Wocher M, Verrelst J. Top-of-Atmosphere Retrieval of Multiple Crop Traits Using Variational Heteroscedastic Gaussian Processes within a Hybrid Workflow. REMOTE SENSING 2021; 13:1589. [PMID: 36082340 PMCID: PMC7613377 DOI: 10.3390/rs13081589] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In support of cropland monitoring, operational Copernicus Sentinel-2 (S2) data became available globally and can be explored for the retrieval of important crop traits. Based on a hybrid workflow, retrieval models for six essential biochemical and biophysical crop traits were developed for both S2 bottom-of-atmosphere (BOA) L2A and S2 top-of-atmosphere (TOA) L1C data. A variational heteroscedastic Gaussian process regression (VHGPR) algorithm was trained with simulations generated by the combined leaf-canopy reflectance model PROSAILat the BOA scale and further combined with the Second Simulation of a Satellite Signal in the Solar Spectrum (6SV) atmosphere model at the TOA scale. Established VHGPR models were then applied to S2 L1C and L2A reflectance data for mapping: leaf chlorophyll content (Cab ), leaf water content (Cw ), fractional vegetation coverage (FVC), leaf area index (LAI), and upscaled leaf biochemical compounds, i.e., LAI * Cab (laiCab) and LAI * Cw (laiCw). Estimated variables were validated using in situ reference data collected during the Munich-North-Isar field campaigns within growing seasons of maize and winter wheat in the years 2017 and 2018. For leaf biochemicals, retrieval from BOA reflectance slightly outperformed results from TOA reflectance, e.g., obtaining a root mean squared error (RMSE) of 6.5 μg/cm2 (BOA) vs. 8 μg/cm2 (TOA) in the case of Cab . For the majority of canopy-level variables, instead, estimation accuracy was higher when using TOA reflectance data, e.g., with an RMSE of 139 g/m2 (BOA) vs. 113 g/m2 (TOA) for laiCw. Derived maps were further compared against reference products obtained from the ESA Sentinel Application Platform (SNAP) Biophysical Processor. Altogether, the consistency between L1C and L2A retrievals confirmed that crop traits can potentially be estimated directly from TOA reflectance data. Successful mapping of canopy-level crop traits including information about prediction confidence suggests that the models can be transferred over spatial and temporal scales and, therefore, can contribute to decision-making processes for cropland management.
Collapse
Affiliation(s)
- José Estévez
- Image Processing Laboratory (IPL), Parc Científic, Universitat de València, 46980 Paterna, Spain
| | - Katja Berger
- Department of Geography, Ludwig-Maximilians-Universität München (LMU), Luisenstr. 37, 80333 Munich, Germany
| | | | | | - Matthias Wocher
- Department of Geography, Ludwig-Maximilians-Universität München (LMU), Luisenstr. 37, 80333 Munich, Germany
| | - Jochem Verrelst
- Image Processing Laboratory (IPL), Parc Científic, Universitat de València, 46980 Paterna, Spain
| |
Collapse
|
21
|
Using Unmanned Aerial Vehicle and Ground-Based RGB Indices to Assess Agronomic Performance of Wheat Landraces and Cultivars in a Mediterranean-Type Environment. REMOTE SENSING 2021. [DOI: 10.3390/rs13061187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The adaptability and stability of new bread wheat cultivars that can be successfully grown in rainfed conditions are of paramount importance. Plant improvement can be boosted using effective high-throughput phenotyping tools in dry areas of the Mediterranean basin, where drought and heat stress are expected to increase yield instability. Remote sensing has been of growing interest in breeding programs since it is a cost-effective technology useful for assessing the canopy structure as well as the physiological traits of large genotype collections. The purpose of this study was to evaluate the use of a 4-band multispectral camera on-board an unmanned aerial vehicle (UAV) and ground-based RGB imagery to predict agronomic traits as well as quantify the best estimation of leaf area index (LAI) in rainfed conditions. A collection of 365 bread wheat genotypes, including 181 Mediterranean landraces and 184 modern cultivars, was evaluated during two consecutive growing seasons. Several vegetation indices (VI) derived from multispectral UAV and ground-based RGB images were calculated at different image acquisition dates of the crop cycle. The modified triangular vegetation index (MTVI2) proved to have a good accuracy to estimate LAI (R2 = 0.61). Although the stepwise multiple regression analysis showed that grain yield and number of grains per square meter (NGm2) were the agronomic traits most suitable to be predicted, the R2 were low due to field trials were conducted under rainfed conditions. Moreover, the prediction of agronomic traits was slightly better with ground-based RGB VI rather than with UAV multispectral VIs. NDVI and GNDVI, from multispectral images, were present in most of the prediction equations. Repeated measurements confirmed that the ability of VIs to predict yield depends on the range of phenotypic data. The current study highlights the potential use of VI and RGB images as an efficient tool for high-throughput phenotyping under rainfed Mediterranean conditions.
Collapse
|
22
|
Fast and Accurate Terrain Image Classification for ASTER Remote Sensing by Data Stream Mining and Evolutionary-EAC Instance-Learning-Based Algorithm. REMOTE SENSING 2021. [DOI: 10.3390/rs13061123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Remote sensing streams continuous data feed from the satellite to ground station for data analysis. Often the data analytics involves analyzing data in real-time, such as emergency control, surveillance of military operations or scenarios that change rapidly. Traditional data mining requires all the data to be available prior to inducing a model by supervised learning, for automatic image recognition or classification. Any new update on the data prompts the model to be built again by loading in all the previous and new data. Therefore, the training time will increase indefinitely making it unsuitable for real-time application in remote sensing. As a contribution to solving this problem, a new approach of data analytics for remote sensing for data stream mining is formulated and reported in this paper. Fresh data feed collected from afar is used to approximate an image recognition model without reloading the history, which helps eliminate the latency in building the model again and again. In the past, data stream mining has a drawback in approximating a classification model with a sufficiently high level of accuracy. This is due to the one-pass incremental learning mechanism inherently exists in the design of the data stream mining algorithm. In order to solve this problem, a novel streamlined sensor data processing method is proposed called evolutionary expand-and-contract instance-based learning algorithm (EEAC-IBL). The multivariate data stream is first expanded into many subspaces, and then the subspaces, which are corresponding to the characteristics of the features are selected and condensed into a significant feature subset. The selection operates stochastically instead of deterministically by evolutionary optimization, which approximates the best subgroup. Followed by data stream mining, the model learning for image recognition is done on the fly. This stochastic approximation method is fast and accurate, offering an alternative to the traditional machine learning method for image recognition application in remote sensing. Our experimental results show computing advantages over other classical approaches, with a mean accuracy improvement at 16.62%.
Collapse
|
23
|
Exploring the Impact of Noise on Hybrid Inversion of PROSAIL RTM on Sentinel-2 Data. REMOTE SENSING 2021. [DOI: 10.3390/rs13040648] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Remote sensing (RS) of biophysical variables plays a vital role in providing the information necessary for understanding spatio-temporal dynamics in ecosystems. The hybrid approach to retrieve biophysical variables from RS by combining Machine Learning (ML) algorithms with surrogate data generated by Radiative Transfer Models (RTM). The susceptibility of the ill-posed solutions to noise currently constrains further application of hybrid approaches. Here, we explored how noise affects the performance of ML algorithms for biophysical trait retrieval. We focused on synthetic Sentinel-2 (S2) data generated using the PROSAIL RTM and four commonly applied ML algorithms: Gaussian Processes (GPR), Random Forests (RFR), and Artificial Neural Networks (ANN) and Multi-task Neural Networks (MTN). After identifying which biophysical variables can be retrieved from S2 using a Global Sensitivity Analysis, we evaluated the performance loss of each algorithm using the Mean Absolute Percentage Error (MAPE) with increasing noise levels. We found that, for S2 data, Carotenoid concentrations are uniquely dependent on band 2, Chlorophyll is almost exclusively dependent on the visible ranges, and Leaf Area Index, water, and dry matter contents are mostly dependent on infrared bands. Without added noise, GPR was the best algorithm (<0.05%), followed by the MTN (<3%) and ANN (<5%), with the RFR performing very poorly (<50%). The addition of noise critically affected the performance of all algorithms (>20%) even at low levels of added noise (≈5%). Overall, both neural networks performed significantly better than GPR and RFR when noise was added with the MTN being slightly better when compared to the ANN. Our results imply that the performance of the commonly used algorithms in hybrid-RTM inversion are pervasively sensitive to noise. The implication is that more advanced models or approaches are necessary to minimize the impact of noise to improve near real-time and accurate RS monitoring of biophysical trait retrieval.
Collapse
|