1
|
Crown Structure Metrics to Generalize Aboveground Biomass Estimation Model Using Airborne Laser Scanning Data in National Park of Hainan Tropical Rainforest, China. FORESTS 2022. [DOI: 10.3390/f13071142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Forest aboveground biomass (AGB) is an important indicator for characterizing forest ecosystem structures and functions. Therefore, how to effectively investigate forest AGB is a vital mission. Airborne laser scanning (ALS) has been demonstrated as an effective way to support investigation and operational applications among a wide range of applications in the forest inventory. Moreover, three-dimensional structure information relating to AGB can be acquired by airborne laser scanning. Many studies estimated AGB from variables that were extracted from point cloud data, but few of them took full advantage of variables related to tree crowns to estimate the AGB. In this study, the main objective was to evaluate and compare the capabilities of different metrics derived from point clouds obtained from ALS. Particularly, individual tree-based alpha-shape, along with other traditional and commonly used plot-level height and intensity metrics, have been used from airborne laser scanning data. We took the random forest and multiple stepwise linear regression to estimate the AGB. By comparing AGB estimates with field measurements, our results showed that the best approach is mixed metrics, and the best estimation model is random forest (R2 = 0.713, RMSE = 21.064 t/ha, MAE = 15.445 t/ha), which indicates that alpha-shape may be a good alternative method to improve AGB estimation accuracy. This method provides an effective solution for estimating aboveground biomass from airborne laser scanning.
Collapse
|
2
|
Inversion of Coniferous Forest Stock Volume Based on Backscatter and InSAR Coherence Factors of Sentinel-1 Hyper-Temporal Images and Spectral Variables of Landsat 8 OLI. REMOTE SENSING 2022. [DOI: 10.3390/rs14122754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Forest stock volume (FSV) is a basic data source for estimating forest carbon sink. It is also a crucial parameter that reflects the quality of forest resources and forest management level. The use of remote sensing data combined with a support vector regression (SVR) algorithm has been widely used in FSV estimation. However, due to the complexity and spatial heterogeneity of the forest biological community, in the FSV high-value area with dense vegetation, the optical re-mote sensing variables tend to be saturated, and the sensitivity of synthetic aperture radar (SAR) backscattering features to the FSV is significantly reduced. These factors seriously affect the ac-curacy of the FSV estimation. In this study, Landsat 8 (L8) Operational Land Imager multispectral images and C-band Sentinel-1 (S1) hyper-temporal SAR images were used to extract three re-mote sensing feature datasets: spectral variables (L8), backscattering coefficients (S1), and inter-ferometric SAR factors (S1-InSAR). We proposed a feature selection method based on SVR (FS-SVR) and compared the FSV estimation performance of FS-SVR and stepwise regression analysis (SRA) on the aforementioned three remote sensing feature datasets. Finally, an estima-tion model of coniferous FSV was constructed using the SVR algorithm in Wangyedian Forest Farm, Inner Mongolia, China, and the spatial distribution map of coniferous FSV was predicted. The experimental results show the following: (1) The coherence amplitude and DSM data ob-tained based on S1 images contain information relat-ed to forest canopy height, and the hy-per-temporal S1 image data significantly enrich the diversity of S1-InSAR feature factors. There-fore, the S1-InSAR dataset has a better FSV response than remote sensing factors such as the S1 backscattering coefficient and L8 vegetation index, and the corresponding root mean square er-ror (RMSE) and relative RMSE (rRMSE) values reached 47.6 m3/ha and 20.9%, respectively. (2) The integrated dataset can provide full play to the synergy of the L8, S1, and S1-InSAR remote sensing data. Its RMSE and rRMSE values are 44.3 m3/ha and 19.4% respectively. (3) The proposed FS-SVR method can better select remote sensing variables suitable for FSV estimation than SRA. The average value of the rRMSE (23.17%) based on the three datasets was 13.8% lower than that of the SRA method (26.87%). This study provides new insights into forest FSV retrieval based on active and passive multisource remote sensing joint data.
Collapse
|
3
|
Comparison of Variable Selection Methods among Dominant Tree Species in Different Regions on Forest Stock Volume Estimation. FORESTS 2022. [DOI: 10.3390/f13050787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The forest stock volume (FSV) is one of the crucial indicators to reflect the quality of forest resources. Variable selection methods are usually used for FSV estimated models. However, few studies have explored which variable selection methods can make the selected data set have better explanatory and robustness for the same dominant tree species in different regions after the feature variables were filtered by the feature selection methods. In this study, we chose six dominant tree species from Lin’an District, Anji County, and a part of Longquan City. The tree species include broad-leaved, coniferous, Masson pine, Chinese fir, coniferous and broad-leaved mixed forest, and all tree species which include the above five groups of tree species. The last two tree species were represented by mixed and all, respectively. Then, the satellite images, terrain factors, and forest inventory data were selected by six variable selection methods (least absolute shrinkage and selection operator (LASSO), recursive feature elimination (RFE), stepwise regression (Step-Reg), permutation importance (PI), mean decrease impurity (MDI), and SelectFromModel based on LightGBM (SFM)), according to different dominant tree types in different regions. The selected variables were formed into a new dataset divided by different dominant trees. Besides, extreme gradient boosting (XGBoost) was used, combined with variable selection methods to estimate the FSV. The performed results are as follows: In the feature selection of coniferous, RFE performed better both in the average and in the separate regions. In the feature selection of Chinese fir and all, PI performed better both in the average and in the separate regions. In the feature selection of Masson pine, MDI performed better both in the average and in the separate regions. In the feature selection of mixed, MDI performed better in the average while RFE performed better in the separate regions comprehensively. The results showed that not only in separate regions, but the average result two factors, RFE, MDI, and PI all performed well to select variables to estimate the FSV. Furthermore, we selected the top five high feature-importance factors of different tree types, and the results showed that tree age and canopy density were both of great importance to the estimation of FSV. Besides, in the exhibited results of feature selection methods, compared with no variable selection, the research also found that variable selection can improve the performance of the model. Additionally, from the results of different tree types in different regions, we also found that small-scale and diversity of dominant tree types may lead to the instability and unreliability of experimental results. The study provides some insight into the application the optimal variable selection methods of the same dominant tree type in different regions. This study will help the development of variable selection methods to estimate FSV.
Collapse
|
4
|
Liu S, Zhang Y, Zhao L, Chen X, Zhou R, Zheng F, Li Z, Li J, Yang H, Li H, Yang J, Gao H, Gu X. QUantitative and Automatic Atmospheric Correction (QUAAC): Application and Validation. SENSORS 2022; 22:s22093280. [PMID: 35590973 PMCID: PMC9100192 DOI: 10.3390/s22093280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022]
Abstract
The difficulty of atmospheric correction based on a radiative transfer model lies in the acquisition of synchronized atmospheric parameters, especially the aerosol optical depth (AOD). At the moment, there is no fully automatic and high-efficiency atmospheric correction method to make full use of the advantages of geostationary meteorological satellites in large-scale and efficient atmospheric monitoring. Therefore, a QUantitative and Automatic Atmospheric Correction (QUAAC) method is proposed which can efficiently correct high-spatial-resolution (HSR) satellite images. QUAAC uses the atmospheric aerosol products of geostationary satellites to match the synchronized AOD according to the temporal and spatial information of HSR satellite images. This method solves the problem that the AOD is difficult to obtain or the accuracy is not high enough to meet the demand of atmospheric correction. By using the obtained atmospheric parameters, atmospheric correction is performed to obtain the surface reflectance (SR). The whole process can achieve fully automatic operation without manual intervention. After QUAAC applied to Gaofen-2 (GF-2) HSR satellite and Himawari-8 (H-8) geostationary satellite, the results show that the effect of QUAAC correction is slightly better than that of the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) correction, and the QUAAC-corrected surface spectral curves have good coherence to that of the synchronously measured by field experiments.
Collapse
Affiliation(s)
- Shumin Liu
- School of Software Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China; (S.L.); (Y.Z.); (R.Z.); (J.L.)
| | - Yunli Zhang
- School of Software Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China; (S.L.); (Y.Z.); (R.Z.); (J.L.)
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China; (L.Z.); (H.Y.); (H.L.); (J.Y.); (H.G.); (X.G.)
| | - Limin Zhao
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China; (L.Z.); (H.Y.); (H.L.); (J.Y.); (H.G.); (X.G.)
| | - Xingfeng Chen
- School of Software Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China; (S.L.); (Y.Z.); (R.Z.); (J.L.)
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China; (L.Z.); (H.Y.); (H.L.); (J.Y.); (H.G.); (X.G.)
- Correspondence:
| | - Ruoxuan Zhou
- School of Software Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China; (S.L.); (Y.Z.); (R.Z.); (J.L.)
| | - Fengjie Zheng
- School of Space Information, Space Engineering University, Beijing 101416, China; (F.Z.); (Z.L.)
| | - Zhiliang Li
- School of Space Information, Space Engineering University, Beijing 101416, China; (F.Z.); (Z.L.)
| | - Jiaguo Li
- School of Software Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China; (S.L.); (Y.Z.); (R.Z.); (J.L.)
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China; (L.Z.); (H.Y.); (H.L.); (J.Y.); (H.G.); (X.G.)
| | - Hang Yang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China; (L.Z.); (H.Y.); (H.L.); (J.Y.); (H.G.); (X.G.)
| | - Huafu Li
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China; (L.Z.); (H.Y.); (H.L.); (J.Y.); (H.G.); (X.G.)
| | - Jian Yang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China; (L.Z.); (H.Y.); (H.L.); (J.Y.); (H.G.); (X.G.)
| | - Hailiang Gao
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China; (L.Z.); (H.Y.); (H.L.); (J.Y.); (H.G.); (X.G.)
| | - Xingfa Gu
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China; (L.Z.); (H.Y.); (H.L.); (J.Y.); (H.G.); (X.G.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Remote Sensing and Information Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China
| |
Collapse
|
5
|
A Novel Method for Estimating Spatial Distribution of Forest Above-Ground Biomass Based on Multispectral Fusion Data and Ensemble Learning Algorithm. REMOTE SENSING 2021. [DOI: 10.3390/rs13193910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Optical remote sensing technology has been widely used in forest resources inventory. Due to the influence of satellite orbits, sensor parameters, sensor errors, and atmospheric effects, there are great differences in vegetation spectral information captured by different satellite sensor images. Spectral fusion technology can couple the advantages of different multispectral sensor images to produce new multispectral data with high spatial and spectral resolution, it has great potential for improving the spectral sensitivity of forest vegetation and alleviating the spectral saturation. However, how to quickly and effectively select the multi-spectral fusion data suitable for forest above-ground biomass (AGB) estimation is a very critical issue. This study proposes a scheme (RF-S) to comprehensively evaluate multispectral fused images and develop the appropriate model for forest AGB estimation, on the basis of random forest (RF) and the stacking ensemble algorithm. First, four classic fusion methods are used to fuse the preprocessed GaoFen-2 (GF-2) multispectral image with Sentinel-2 image to generate 12 fused Sentinel-like images. Secondly, we apply a comprehensive evaluation method to quickly select the optimal fused image for the follow-up research. Subsequently, two feature combination optimization methods are used to select feature variables from the three feature sets. Finally, the stacking ensemble algorithm based on model dynamic integration and hyperparameter automatic optimization, as well as some classic machine learners, are used to construct the forest AGB estimation model. The results show that the fused image NND_B3 (based on nearest neighbor diffusion pan sharpening method and Band3_Red) selected by the evaluation method proposed in this study has the best performance in AGB estimation. Using the stacking ensemble method and NND_B3 image, we get the highest estimation accuracy, with the adjusted R2 and relative root mean square error (RMSEr) of 0.6306 and 15.53%, respectively. The AGB estimation RMSEr of NND_B3 is 19.95% and 24.90% lower than those of GF-2 and Sentinel-2, respectively. We also found that the multi-window texture factor has better performance in the area with low AGB, and it can suppress the overestimation significantly. The AGB spatial distribution estimated using the NND_B3 image matches the field observations well, indicating that the multispectral fusion image combined with the Stacking algorithm can increase the accuracy and saturation of the AGB estimates.
Collapse
|
6
|
Coniferous Plantations Growing Stock Volume Estimation Using Advanced Remote Sensing Algorithms and Various Fused Data. REMOTE SENSING 2021. [DOI: 10.3390/rs13173468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spatial distribution prediction of growing stock volume (GSV) for supporting the sustainable management of forest ecosystems, is one of the most widespread applications of remote sensing. For this purpose, remote sensing data were used as predictor variables in combination with ground data obtained from field sample plots. However, with the increase in forest GSV values, the spectral reflectance of remote sensing imagery is often saturated or less sensitive to the GSV changes, making accurate estimation difficult. To improve this, we examined the GSV estimation performance and data saturation of four optical remote sensing image datasets (Landsat 8, Sentinel-2, ZiYuan-3, and GaoFen-2) in the subtropical region of Central South China. First, various feature variables were extracted and three optimization methods were used to select optimal feature variable combinations. Subsequently, k-nearest-neighbor (kNN), random forest regression, and categorical boosting algorithms were employed to build the GSV estimation models, and evaluate the GSV estimation accuracy and saturation. Second, Gram Schmidt (GS) and NNDiffuse pan sharpening (NND) methods were employed to fuse the optimal multispectral images and explore various image fusion schemes suitable for GSV estimation. We proposed an adaptive stacking (AdaStacking) model ensemble algorithm to further improve GSV estimation performance. The results indicated that Sentinel-2 had the highest GSV estimation accuracy exhibiting a minimum relative root mean square error of 20.06% and saturation of 434 m3/ha, followed by GaoFen-2 with a minimum relative root mean square error of 22.16% and a saturation of 409 m3/ha. Among the four fusion images, the NND-B2 image—obtained by fusing the GaoFen-2 green band and Sentinel-2 multispectral image with the NND method—had the best estimation accuracy. The estimated optimal RMSEs of NND-B2 were 24.4% and 16.5% lower than those of GaoFen-2 and Sentinel-2, respectively. Therefore, the fused image data based on GF-2 and Sentinel-2 can effectively couple the advantages of the two images and significantly improve the GSV estimation performance. Moreover, the proposed adaptive stacking model is more effective in GSV estimation than a single model. The GSV estimation saturation value of the AdaStacking model based on NND-B2 was 5.4% higher than that of the KNN-Maha model. The GSV distribution map estimated by AdaStacking model used the NND-B2 dataset corresponded accurately with the field observations. This study provides some insights into the optical image fusion scheme, feature selection, and adaptive modeling algorithm in GSV estimation for coniferous forest.
Collapse
|
7
|
Deep Siamese Networks Based Change Detection with Remote Sensing Images. REMOTE SENSING 2021. [DOI: 10.3390/rs13173394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although considerable success has been achieved in change detection on optical remote sensing images, accurate detection of specific changes is still challenging. Due to the diversity and complexity of the ground surface changes and the increasing demand for detecting changes that require high-level semantics, we have to resort to deep learning techniques to extract the intrinsic representations of changed areas. However, one key problem for developing deep learning metho for detecting specific change areas is the limitation of annotated data. In this paper, we collect a change detection dataset with 862 labeled image pairs, where the urban construction-related changes are labeled. Further, we propose a supervised change detection method based on a deep siamese semantic segmentation network to handle the proposed data effectively. The novelty of the method is that the proposed siamese network treats the change detection problem as a binary semantic segmentation task and learns to extract features from the image pairs directly. The siamese architecture as well as the elaborately designed semantic segmentation networks significantly improve the performance on change detection tasks. Experimental results demonstrate the promising performance of the proposed network compared to existing approaches.
Collapse
|