1
|
Oliva A, Onana VE, Garner RE, Kraemer SA, Fradette M, Walsh DA, Huot Y. Geospatial analysis reveals a hotspot of fecal bacteria in Canadian prairie lakes linked to agricultural non-point sources. WATER RESEARCH 2023; 231:119596. [PMID: 36653256 DOI: 10.1016/j.watres.2023.119596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Lakes are sentinels of environmental changes within their watersheds including those induced by a changing climate and anthropogenic activities. In particular, contamination originating from point or non-point sources (NPS) within watersheds might be reflected in changes in the bacterial composition of lake water. We assessed the abundance of potentially pathogenic bacteria (PPB) sampled in 413 lakes within 8 southern Canadian ecozones that represent a wide diversity of lakes and watershed land use. The study objectives were (1) to explore the diversity of PPB; (2) to build a fecal multi-indicator from a cluster of co-occurring PPB; and (3) to predict the fecal multi-indicator over thousands of lakes. We identified bacterial taxa based on 16S rRNA amplicon sequencing and clustered 33 PPB matching taxa in the Canadian ePATHogen database using a Sørensen dissimilarity index on binary data across the sampled lakes. One cluster contained Erysipelothrix, Desulfovibrio, Bacteroides, Vibrio and Acholeplasma and was related to the NPS fraction of agriculture and pasture within the watershed as its main driver and thus it was determined as the fecal multi-indicator. We subsequently developed a fecal multi-indicator predictive model across 200 212 southern Canadian lakes which explained 55.1% of the deviance. Mapping the predictions showed higher fecal multi-indicator abundances in the Prairies and Boreal Plains compared to the other ecozones. These results represent the first attempt to map a potential fecal multi-indicator at the continental scale, which may be further improved in the future. Lastly, the study demonstrates the capacity of a multi-disciplinary approach leveraging both datasets derived from remote sensing and DNA sequencing to provide mapping information for public health governmental policies.
Collapse
Affiliation(s)
- Anaïs Oliva
- Département de Géomatique Appliquée, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; Département de Géomatique Appliquée, CARTEL - Centre d'Applications et de Recherche en TELédétection, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; Département de Sciences Biologiques, GRIL - Groupement de Recherche Interuniversitaire en Limnologie, Université de Montréal, Campus MIL, Montréal, QC H3C 3J7, Canada.
| | - Vera E Onana
- Département de Sciences Biologiques, GRIL - Groupement de Recherche Interuniversitaire en Limnologie, Université de Montréal, Campus MIL, Montréal, QC H3C 3J7, Canada; Department of Biology, Concordia University, Montréal, QC H4B 1R6, Canada
| | - Rebecca E Garner
- Département de Sciences Biologiques, GRIL - Groupement de Recherche Interuniversitaire en Limnologie, Université de Montréal, Campus MIL, Montréal, QC H3C 3J7, Canada; Department of Biology, Concordia University, Montréal, QC H4B 1R6, Canada
| | - Susanne A Kraemer
- Département de Sciences Biologiques, GRIL - Groupement de Recherche Interuniversitaire en Limnologie, Université de Montréal, Campus MIL, Montréal, QC H3C 3J7, Canada; Department of Biology, Concordia University, Montréal, QC H4B 1R6, Canada; Environment and Climate Change Canada, Montréal, Canada; Department of Microbiology & Immunology, Genome Center, McGill University, Montreal, Canada
| | - Maxime Fradette
- Département de Géomatique Appliquée, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; Département de Géomatique Appliquée, CARTEL - Centre d'Applications et de Recherche en TELédétection, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; Département de Sciences Biologiques, GRIL - Groupement de Recherche Interuniversitaire en Limnologie, Université de Montréal, Campus MIL, Montréal, QC H3C 3J7, Canada
| | - David A Walsh
- Département de Sciences Biologiques, GRIL - Groupement de Recherche Interuniversitaire en Limnologie, Université de Montréal, Campus MIL, Montréal, QC H3C 3J7, Canada; Department of Biology, Concordia University, Montréal, QC H4B 1R6, Canada
| | - Yannick Huot
- Département de Géomatique Appliquée, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; Département de Géomatique Appliquée, CARTEL - Centre d'Applications et de Recherche en TELédétection, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; Département de Sciences Biologiques, GRIL - Groupement de Recherche Interuniversitaire en Limnologie, Université de Montréal, Campus MIL, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
2
|
Evaluation of Atmospheric Correction Algorithms over Lakes for High-Resolution Multispectral Imagery: Implications of Adjacency Effect. REMOTE SENSING 2022. [DOI: 10.3390/rs14132979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Atmospheric correction of satellite optical imagery over inland waters is a key remaining challenge in aquatic remote sensing. This is due to numerous confounding factors such as the complexity of water optical properties, the surface glint, the heterogeneous nature of atmospheric aerosols, and the proximity of bright land surfaces. This combination of factors makes it difficult to retrieve accurate information about the system observed. Moreover, the impact of radiance coming from adjacent land (adjacency effects) in complex geometries further adds to this challenge, especially for small lakes. In this study, ten atmospheric correction algorithms were evaluated for high-resolution multispectral imagery of Landsat-8 Operational Land Imager and Sentinel-2 MultiSpectral Instrument using in situ optical measurements from ~300 lakes across Canada. The results of the validation show that the performance of the algorithms varies by spectral band and evaluation metrics. The dark spectrum fitting algorithm had the best performance in terms of similarity angle (spectral shape), while the neural network-based models showed the lowest errors and bias per band. However, none of the tested atmospheric correction algorithms meet a 30% retrieval accuracy target across all the visible bands, likely due to uncorrected adjacency effects. To quantify this process, three-dimensional radiative transfer simulations were performed and compared to satellite observations. These simulations show that up to 60% of the top of atmosphere reflectance in the near-infrared bands over the lake was from the adjacent lands covered with green vegetation. The significance of these adjacency effects on atmospheric correction has been analyzed qualitatively, and potential efforts to improve the atmospheric correction algorithms are discussed.
Collapse
|
3
|
Deutsch ES, Fortin MJ, Cardille JA. Assessing the current water clarity status of ~100,000 lakes across southern Canada: A remote sensing approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:153971. [PMID: 35183627 DOI: 10.1016/j.scitotenv.2022.153971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Canada has more lakes than any other country, making comprehensive monitoring a huge challenge. As more and more satellite data become readily available, and as faster data processing systems make massive satellite data operations possible, new opportunities exist to use remote sensing to develop comprehensive assessments of water quality at very large spatial scales. In this study, we use a published empirical algorithm to estimate Secchi depth from Landsat 8 reflectance data in order to estimate water clarity in lakes across southern Canada. Combined with ancillary information on lake morphological, hydrological, and watershed geological and landuse characteristics, we were able to assess broad spatial patterns in water clarity for the first time. Ecological zones, underlying geological substrate, and lake depth had particularly strong influences on clarity across the whole country. Lakes in western mountain ecozones had significantly clearer waters than those in the prairies and plains, while lakes in sedimentary rock formations tended to have lower clarity than lakes in intrusive rock. Deep lakes were significantly clearer than shallow lakes over most of the country. Water clarity was also significantly influenced by human impact (urbanization, agriculture, and industry) in the watershed, with most lakes in high impact areas having low clarity or very low clarity. Finally, we used in situ measured data to help interpret the underlying optical water column constituents influencing clarity across Canada, and found that chlorophyll-a, total suspended solids, and color dissolved organic matter all had strong but varying underlying effects on water clarity across different ecozones. This research provides an important step towards further research on the relationship between water column optical properties and the health and vulnerability status of lakes across the country.
Collapse
Affiliation(s)
- Eliza S Deutsch
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada.
| | - Marie-Josée Fortin
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada.
| | - Jeffrey A Cardille
- Department of Natural Resources Sciences and Bieler School of Environment, McGill University, Macdonald-Stewart Building, Montreal, QC H9X 3V9, Canada.
| |
Collapse
|
4
|
Oliva A, Garner RE, Walsh D, Huot Y. The occurrence of potentially pathogenic fungi and protists in Canadian lakes predicted using geomatics, in situ and satellite-derived variables: Towards a tele-epidemiological approach. WATER RESEARCH 2022; 209:117935. [PMID: 34915335 DOI: 10.1016/j.watres.2021.117935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Eukaryotic pathogens including fungi and enteroparasites infect humans, animals and plants. As integrators of landscape catchment, lakes can reflect and record biological and geochemical events or anthropogenic changes and provide useful knowledge to formulate public health, food security and water policies to manage and prevent diseases. In this context, potentially pathogenic fungi and parasites were sampled using 18S rRNA gene amplicon sequencing in 382 lakes displaying a broad range of sizes and human impact on the watershed in 10 ecozones across Canada. Based on pathogen classifications from the ePATHogen database published by the Public Health Agency of Canada, we identified 23 health-relevant genera for human and animal hosts, including Cryptococcus and Cryptosporidium. Our study investigated the potential of remote sensing and geomatics to predict microbial contamination in a tele-epidemiological approach. We used boosted regression tree modeling to evaluate the probability of occurrence of the most common genera found in our dataset based on 10 satellite-derivable, geomatics and field survey variables which could be potential sources or transport mechanisms through the watershed or survival factors in the water. We found that southern ecozones that possess the highest agricultural and pasture activities tend to contain lakes with the largest number of potential pathogens including several fungi associated with plant diseases. Bio-optical factors, such as colored dissolved organic matter, were highly related to the occurrence of the genera, potentially by protecting against damage from ultraviolet light. Our results demonstrate the capability of tele-epidemiology to provide useful information to develop government policies for recreational and drinking water regulations as well as for food security.
Collapse
Affiliation(s)
- Anaïs Oliva
- Département de Géomatique Appliquée, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; CARTEL - Centre d'applications et de recherche en télédétection, Département de Géomatique Appliquée, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; GRIL - Groupement de Recherche Interuniversitaire en Limnologie, Département de Sciences Biologiques, Université de Montréal, Campus MIL, Montréal, QC H3C 3J7, Canada.
| | - Rebecca E Garner
- GRIL - Groupement de Recherche Interuniversitaire en Limnologie, Département de Sciences Biologiques, Université de Montréal, Campus MIL, Montréal, QC H3C 3J7, Canada; Department of Biology, Concordia University, Montréal QC H4B 1R6, Canada
| | - David Walsh
- GRIL - Groupement de Recherche Interuniversitaire en Limnologie, Département de Sciences Biologiques, Université de Montréal, Campus MIL, Montréal, QC H3C 3J7, Canada; Department of Biology, Concordia University, Montréal QC H4B 1R6, Canada
| | - Yannick Huot
- Département de Géomatique Appliquée, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; CARTEL - Centre d'applications et de recherche en télédétection, Département de Géomatique Appliquée, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; GRIL - Groupement de Recherche Interuniversitaire en Limnologie, Département de Sciences Biologiques, Université de Montréal, Campus MIL, Montréal, QC H3C 3J7, Canada
| |
Collapse
|