1
|
Forecast Characteristics of Radar Data Assimilation Based on the Scales of Precipitation Systems. REMOTE SENSING 2022. [DOI: 10.3390/rs14030605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Radar data with high spatiotemporal resolution and automatic weather station (AWS) data are used in the data assimilation experiment to improve the precipitation forecast of a numerical model. The numerical model considered in this study is the Weather Research and Forecasting (WRF) model with double-moment 6-class microphysics scheme (WDM6). We calculated the radar equivalent reflectivity factor using high resolution WRF and compared it with radar observations in South Korea. To compare the precipitation forecast characteristics of the three-dimensional variational (3D-Var) assimilation of radar data, four experiments were performed based on the scales of precipitation systems. Comparison of the 24 h accumulated rainfall with surface observation data, contoured frequency by altitude diagram (CFAD), time–height cross sections (THCS), and vertical hydrometeor profiles was used to evaluate the accuracy of the simulation of precipitation. The model simulations were performed with and without 3D-VAR radar reflectivity, radial velocity and AWS assimilation for two mesoscale convective cases and two synoptic scale cases. The combined effect of the radar and AWS data assimilation experiment improved the location of the precipitation area and rainfall intensity compared to the control run. There is a noticeable scale dependence in the improvement of precipitation systems. Improvements in simulating mesoscale convective systems were larger compared to synoptically driven precipitation systems.
Collapse
|
2
|
Vertical Structure of Ice Clouds and Vertical Air Motion from Vertically Pointing Cloud Radar Measurements. REMOTE SENSING 2021. [DOI: 10.3390/rs13214349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The vertical structure of ice clouds and vertical air motion (Vair) were investigated using vertically pointing Ka-band cloud radar. The distributions of reflectivity (Z), Doppler velocity (VD), and spectrum width (SW) were analyzed for three ice cloud types, namely, cirrus, anvil, and stratiform clouds. The radar parameters of the cirrus clouds showed narrower distributions than those of the stratiform and anvil clouds. In the vertical structures, the rapid growth of Z and VD occurred in the layer between 8 and 12 km (roughly a layer of −40 °C to −20 °C) for all ice clouds. The prominent feature in the stratiform clouds was an elongated “S” shape in the VD near 7–7.5 km (at approximately −16 °C to −13 °C) due to a significant decrease in an absolute value of VD. The mean terminal fall velocity (Vt) and Vair in the ice clouds were estimated using pre-determined Vt–Z relationships (Vt = aZb) and the observed VD. Although the cirrus clouds demonstrated wide distributions in coefficients a and exponents b depending on cloud heights, they showed a smaller change in Z and Vt values compared to that of the other cloud types. The anvil clouds had a larger exponent than that of the stratiform clouds, indicating that the ice particle density of anvil clouds increases at a faster rate compared with the density of stratiform clouds for the same Z increment. The significant positive Vair appeared at the top of all ice clouds in range up to 0.5 m s−1, and the anvil clouds showed the deepest layer of upward motion. The stratiform and anvil clouds showed a dramatic increase in vertical air motion in the layer of 6–8 km as shown by the rapid decrease of VD. This likely caused increase of supersaturation above. A periodic positive Vair linked with a significant reduction in VD appeared at the height of 7–8 km (approximately −15 °C) dominantly in the stratiform clouds. This layer exhibited a bi-modal power spectrum produced by pre-existing larger ice particles and newly formed numerous smaller ice particles. This result raised a question on the origins of smaller ice particles such as new nucleation due to increased supersaturation by upward motion below or the seeder-feeder effect. In addition, the retrieved Vair with high-resolution data well represented a Kelvin-Helmholtz wave development.
Collapse
|