1
|
An Improved Spatiotemporal Weighted Mean Temperature Model over Europe Based on the Nonlinear Least Squares Estimation Method. REMOTE SENSING 2022. [DOI: 10.3390/rs14153609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Weighted average temperature (Tm) plays a crucial role in global navigation satellite system (GNSS) precipitable water vapor (PWV) retrieval. Aiming at the poor applicability of the existing Tm models in Europe, in the article, we used observations from 48 radiosonde stations over Europe from 2014 to 2020 to establish a weighted average temperature model in Europe (ETm) by the nonlinear least squares estimation method. The ETm model takes into account factors such as ground temperature, water vapor pressure, latitude, and their annual variation, semiannual variation and diurnal variation. Taking the Tm obtained from the radiosonde data by the integration method in 2021 as the reference value, the accuracy of the ETm model was evaluated and compared with the commonly used Bevis model, ETmPoly model, and GPT2w model. The results of the 48 modeled stations showed that the mean bias and root mean square (RMS) values of the ETm model were 0.06 and 2.85 K, respectively, which were 21.7%, 11.5%, and 31.8% higher than the Bevis, ETmPoly, and GPT2w-1 (1° × 1° resolution) models, respectively. In addition, the radiosonde data of 12 non-modeling stations over Europe in 2021 were selected to participate in the model accuracy validation. The mean bias and RMS values of the ETm model were –0.07 and 2.87 K, respectively. Compared with the Bevis, ETmPoly, and GPT2w-1 models, the accuracy (in terms of RMS values) increased by 20.5%, 10.6%, and 35.2%, respectively. Finally, to further verify the superiority of the ETm model, the ETm model, and other Tm models were applied to the GNSS PWV calculation. The ETm model had mean RMSPWV and RMSPWV/PWV values of 0.17 mm and 1.03%, respectively, which were less than other Tm models. Therefore, the ETm model has essential applications in GNSS PWV over Europe.
Collapse
|
2
|
Comprehensive Analysis and Validation of the Atmospheric Weighted Mean Temperature Models in China. REMOTE SENSING 2022. [DOI: 10.3390/rs14143435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Atmospheric weighted mean temperature (Tm) is a key parameter used by the Global Navigation Satellite System (GNSS) for calculating precipitable water vapor (PWV). Some empirical Tm models using meteorological or non-meteorological parameters have been proposed to calculate PWV, but their accuracy and reliability cannot be guaranteed in some regions. To validate and determine the optimal Tm model for PWV retrieval in China, this paper analyzes and evaluates some typical Tm models, namely, the Linear, Global Pressure and Temperature 3 (GPT3), the Tm model for China (CTm), the Global Weighted Mean Temperature-H (GTm-H) and the Global Tropospheric (GTrop) models. The Tm values of these models are first obtained at corresponding radiosonde (RS) stations in China over the period of 2011 to 2020. The corresponding Tm values of 87 RS stations in China are also calculated using the layered meteorological data and regarded as the reference. Comparison results show that the accuracy of these five Tm models in China has an obvious geographical distribution and decreases along with increasing altitude and latitude, respectively. The average root mean square (RMS) and Bias for the Linear, GPT3, CTm, GTm-H and GTrop models are 4.2/3.7/3.4/3.6/3.3 K and 0.7/−1.0/0.7/−0.1/0.3 K, respectively. Among these models, Linear and GPT3 models have lower accuracy in high-altitude regions, whereas CTm, GTm-H and GTrop models show better accuracy and stability throughout the whole China. These models generally have higher accuracy in regions with low latitude and lower accuracy in regions with middle and high latitudes. In addition, Linear and GPT3 models have poor accuracy in general, whereas GTm-H and CTm models are obviously less accurate and stable than GTrop model in regions with high latitude. These models show different accuracies across the four geographical regions of China, with GTrop model demonstrating the relatively better accuracy and stability. Therefore, the GTrop model is recommended to obtain Tm for calculating PWV in China.
Collapse
|