1
|
Yu W, Song J, Li S, Guo Y. Is model-estimated PM 2.5 exposure equivalent to station-observed in mortality risk assessment? A literature review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123852. [PMID: 38531468 DOI: 10.1016/j.envpol.2024.123852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Model-estimated air pollution exposure assessments have been extensively employed in the evaluation of health risks associated with air pollution. However, few studies synthetically evaluate the reliability of model-estimated PM2.5 products in health risk assessment by comparing them with ground-based monitoring station air quality data. In response to this gap, we undertook a meticulously structured systematic review and meta-analysis. Our objective was to aggregate existing comparative studies to ascertain the disparity in mortality effect estimates derived from model-estimated ambient PM2.5 exposure versus those based on monitoring station-observed PM2.5 exposure. We conducted searches across multiple databases, namely PubMed, Scopus, and Web of Science, using predefined keywords. Ultimately, ten studies were included in the review. Of these, seven investigated long-term annual exposure, while the remaining three studies focused on short-term daily PM2.5 exposure. Despite variances in the estimated Exposure-Response (E-R) associations, most studies revealed positive associations between ambient PM2.5 exposure and all-cause and cardiovascular mortality, irrespective of the exposure being estimated through models or observed at monitoring stations. Our meta-analysis revealed that all-cause mortality risk associated with model-estimated PM2.5 exposure was in line with that derived from station-observed sources. The pooled Relative Risk (RR) was 1.083 (95% CI: 1.047, 1.119) for model-estimated exposure, and 1.089 (95% CI: 1.054, 1.125) for station-observed sources (p = 0.795). In conclusion, most model-estimated air pollution products have demonstrated consistency in estimating mortality risk compared to data from monitoring stations. However, only a limited number of studies have undertaken such comparative analyses, underscoring the necessity for more comprehensive investigations to validate the reliability of these model-estimated exposure in mortality risk assessment.
Collapse
Affiliation(s)
- Wenhua Yu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Jiangning Song
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
2
|
Yu W, Huang W, Gasparrini A, Sera F, Schneider A, Breitner S, Kyselý J, Schwartz J, Madureira J, Gaio V, Guo YL, Xu R, Chen G, Yang Z, Wen B, Wu Y, Zanobetti A, Kan H, Song J, Li S, Guo Y. Ambient fine particulate matter and daily mortality: a comparative analysis of observed and estimated exposure in 347 cities. Int J Epidemiol 2024; 53:dyae066. [PMID: 38725299 PMCID: PMC11082424 DOI: 10.1093/ije/dyae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 04/13/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Model-estimated air pollution exposure products have been widely used in epidemiological studies to assess the health risks of particulate matter with diameters of ≤2.5 µm (PM2.5). However, few studies have assessed the disparities in health effects between model-estimated and station-observed PM2.5 exposures. METHODS We collected daily all-cause, respiratory and cardiovascular mortality data in 347 cities across 15 countries and regions worldwide based on the Multi-City Multi-Country collaborative research network. The station-observed PM2.5 data were obtained from official monitoring stations. The model-estimated global PM2.5 product was developed using a machine-learning approach. The associations between daily exposure to PM2.5 and mortality were evaluated using a two-stage analytical approach. RESULTS We included 15.8 million all-cause, 1.5 million respiratory and 4.5 million cardiovascular deaths from 2000 to 2018. Short-term exposure to PM2.5 was associated with a relative risk increase (RRI) of mortality from both station-observed and model-estimated exposures. Every 10-μg/m3 increase in the 2-day moving average PM2.5 was associated with overall RRIs of 0.67% (95% CI: 0.49 to 0.85), 0.68% (95% CI: -0.03 to 1.39) and 0.45% (95% CI: 0.08 to 0.82) for all-cause, respiratory, and cardiovascular mortality based on station-observed PM2.5 and RRIs of 0.87% (95% CI: 0.68 to 1.06), 0.81% (95% CI: 0.08 to 1.55) and 0.71% (95% CI: 0.32 to 1.09) based on model-estimated exposure, respectively. CONCLUSIONS Mortality risks associated with daily PM2.5 exposure were consistent for both station-observed and model-estimated exposures, suggesting the reliability and potential applicability of the global PM2.5 product in epidemiological studies.
Collapse
Affiliation(s)
- Wenhua Yu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Wenzhong Huang
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Antonio Gasparrini
- Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, UK
| | - Francesco Sera
- Department of Statistics, Computer Science and Applications ‘G. Parenti’, University of Florence, Florence, Italy
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Susanne Breitner
- Institute of Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Jan Kyselý
- Department of Climatology, Institute of Atmospheric Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joana Madureira
- Department of Environmental Health, Instituto Nacional de Saúde Dr Ricardo Jorge, Porto, Portugal
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Vânia Gaio
- Department of Epidemiology, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisboa, Portugal
| | - Yue Leon Guo
- Department of Environmental and Occupational Medicine, National Taiwan University (NTU) College of Medicine and NTU Hospital, Taipei, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Institute of Environmental and Occupational Health Sciences, NTU College of Public Health, Taipei, Taiwan
| | - Rongbin Xu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Gongbo Chen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Zhengyu Yang
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Bo Wen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yao Wu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Jiangning Song
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
3
|
Bai H, Wu H, Gao W, Wang S, Cao Y. Influence of spatial resolution of PM 2.5 concentrations and population on health impact assessment from 2010 to 2020 in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121505. [PMID: 36965685 DOI: 10.1016/j.envpol.2023.121505] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
Ambient PM2.5 pollution is a leading environmental health risk factor worldwide. The spatial resolution of PM2.5 concentrations and population strongly impacts PM2.5-related health impact estimates. However, long-term variations and regional differences in this impact have rarely been explored, particularly in China. Here, by aggregating satellite-derived PM2.5 concentration and population datasets at 1-km resolution in China to coarser resolutions (10, 50, and 100 km), we evaluated decadal changes in the impact of resolution on health assessments at national and local scales. For the sensitivity of population-weighted mean (PWM) PM2.5 concentrations to resolution, we found that the national PWM PM2.5 concentration decreased with coarser resolutions; this pattern was widely observed and was more obvious in southern and central China and the Sichuan Basin. The results showed that the sensitivity of national PWM PM2.5 concentrations to resolution continuously weakened from 2010 to 2020, likely due to a reduction in the spatial heterogeneity of PM2.5 concentrations in regions with high sensitivity. This weakness caused a large underestimation of the long-term trend of national PWM PM2.5 using a 100-km resolution, which was 7% lower than the trend at 1 km. Regarding the sensitivity of PM2.5-attributable mortality to resolution, most of China exhibited a pattern in which attributable mortality decreased with coarser resolution. The sensitivity of the estimated PM2.5-attributable mortality to resolution also weakened over time on a national scale and in most parts of China. Nevertheless, the weakness for mortality sensitivity was not as apparent as for PWM PM2.5 sensitivity. This was likely because different drivers played distinct roles in the temporal variation of the mortality sensitivity: population aging enhanced the sensitivity, and variations in PM2.5 concentrations and population distribution both weakened the sensitivity. However, the national attributable mortality trend at a 100-km resolution was still underestimated by 1.75% relative to the 1-km resolution.
Collapse
Affiliation(s)
- Heming Bai
- Research Center for Intelligent Information Technology, Nantong University, Nantong, 226019, China.
| | - Huiqun Wu
- Department of Medical Informatics, Medical School of Nantong University, Nantong, 226019, China
| | - Wenkang Gao
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Shuai Wang
- China National Environmental Monitoring Center, Beijing, 100012, China
| | - Yang Cao
- School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
4
|
Evaluating the Spatial Risk of Bacterial Foodborne Diseases Using Vulnerability Assessment and Geographically Weighted Logistic Regression. REMOTE SENSING 2022. [DOI: 10.3390/rs14153613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Foodborne diseases are an increasing concern to public health; climate and socioeconomic factors influence bacterial foodborne disease outbreaks. We developed an “exposure–sensitivity–adaptability” vulnerability assessment framework to explore the spatial characteristics of multiple climatic and socioeconomic environments, and analyzed the risk of foodborne disease outbreaks in different vulnerable environments of Zhejiang Province, China. Global logistic regression (GLR) and geographically weighted logistic regression (GWLR) models were combined to quantify the influence of selected variables on regional bacterial foodborne diseases and evaluate the potential risk. GLR results suggested that temperature, total precipitation, road density, construction area proportions, and gross domestic product (GDP) were positively correlated with foodborne diseases. GWLR results indicated that the strength and significance of these relationships varied locally, and the predicted risk map revealed that the risk of foodborne diseases caused by Vibrio parahaemolyticus was higher in urban areas (60.6%) than rural areas (20.1%). Finally, distance from the coastline was negatively correlated with predicted regional risks. This study provides a spatial perspective for the relevant departments to prevent and control foodborne diseases.
Collapse
|