1
|
Hillebrand FL, Freitas MWDDE, Bremer UF, Abrantes TC, Simões JC, Mendes Júnior CW, Schardong F, Arigony-Neto J. Concentration and thickness of sea ice in the Weddell Sea from SSM/I passive microwave radiometer data. AN ACAD BRAS CIENC 2023; 95:e20230342. [PMID: 37937658 DOI: 10.1590/0001-3765202320230342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/27/2023] [Indexed: 11/09/2023] Open
Abstract
This study evaluated feasibility statistically and analyzed, during the freezing period, the relationship between brightness temperature (Tb) data of the 37V polarisation and the GR3719 (Gradient Ratio 37V and 19V) obtained by Special Sensor Microwave/Imager from F11 and F13 satellites with sea ice thickness (SIT) data obtained in the Weddell Sea through Antarctic Sea Ice Processes and Climate program. The multiple linear regression (MLR) was applied at 1,520 points, with 70% of these points being randomly separated to generate the MLR and 30% to carry out the validation. To perform the temporal mapping, the MLR was applied only to pixels with sea ice concentration (SIC) ≥ 90%, obtained through the fraction image calculated from the spectral linear mixing model (SLMM) using the Tb in the channels and polarizations 19H, 19V and 37V. The results of the SLMM validation process for estimating the SIC were σ = 10.5%, RMSE = 11.0%, and bias = -2.8%, and the SIT based on the MLR, the results were R² = 0.57, RMSE = 0.268 m, and bias = 0.103 m. In the SIT mapping, we highlight the trend of thickness reduction on the east coast of the Antarctic Peninsula during the period 1992-2009.
Collapse
Affiliation(s)
- Fernando Luis Hillebrand
- Instituto Federal de Educacão, Ciência e Tecnologia do Rio Grande do Sul/IFRS, Rodovia RS-239, Km 68, 3505, 95700-000 Rolante, RS, Brazil
- Universidade Federal do Rio Grande do Sul/UFRGS, Centro Polar e Climático, Av. Bento Gonçalves, 9500, Prédio 43136, Salas 208 e 210, 91501-970 Porto Alegre, RS, Brazil
| | - Marcos W D DE Freitas
- Universidade Federal do Rio Grande do Sul/UFRGS, Centro Polar e Climático, Av. Bento Gonçalves, 9500, Prédio 43136, Salas 208 e 210, 91501-970 Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul/UFRGS, Programa de Pós-Graduação em Sensoriamento Remoto, Av. Bento Gonçalves, 9500, Prédio 44202, Setor 5, 90501-970 Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul/UFRGS, Instituto de Geociências, Av. Bento Gonçalves, 9500, 90501-970 Porto Alegre, RS, Brazil
| | - Ulisses F Bremer
- Universidade Federal do Rio Grande do Sul/UFRGS, Centro Polar e Climático, Av. Bento Gonçalves, 9500, Prédio 43136, Salas 208 e 210, 91501-970 Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul/UFRGS, Programa de Pós-Graduação em Sensoriamento Remoto, Av. Bento Gonçalves, 9500, Prédio 44202, Setor 5, 90501-970 Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul/UFRGS, Instituto de Geociências, Av. Bento Gonçalves, 9500, 90501-970 Porto Alegre, RS, Brazil
| | - Tales C Abrantes
- Universidade Federal do Rio Grande do Sul/UFRGS, Programa de Pós-Graduação em Sensoriamento Remoto, Av. Bento Gonçalves, 9500, Prédio 44202, Setor 5, 90501-970 Porto Alegre, RS, Brazil
| | - Jefferson C Simões
- Universidade Federal do Rio Grande do Sul/UFRGS, Centro Polar e Climático, Av. Bento Gonçalves, 9500, Prédio 43136, Salas 208 e 210, 91501-970 Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul/UFRGS, Instituto de Geociências, Av. Bento Gonçalves, 9500, 90501-970 Porto Alegre, RS, Brazil
| | - Cláudio W Mendes Júnior
- Universidade Federal do Rio Grande do Sul/UFRGS, Centro Polar e Climático, Av. Bento Gonçalves, 9500, Prédio 43136, Salas 208 e 210, 91501-970 Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul/UFRGS, Programa de Pós-Graduação em Sensoriamento Remoto, Av. Bento Gonçalves, 9500, Prédio 44202, Setor 5, 90501-970 Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul/UFRGS, Instituto de Geociências, Av. Bento Gonçalves, 9500, 90501-970 Porto Alegre, RS, Brazil
| | - Frederico Schardong
- Instituto Federal de Educacão, Ciência e Tecnologia do Rio Grande do Sul/IFRS, Rodovia RS-239, Km 68, 3505, 95700-000 Rolante, RS, Brazil
| | - Jorge Arigony-Neto
- Universidade Federal do Rio Grande/FURG, Instituto de Oceanografia, Av. Itália, s/n, Km 8, 96201-900 Rio Grande, RS, Brazil
| |
Collapse
|
2
|
An Improved Algorithm for the Retrieval of the Antarctic Sea Ice Freeboard and Thickness from ICESat-2 Altimeter Data. REMOTE SENSING 2022. [DOI: 10.3390/rs14051069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ICESat-2 altimeter data could be used to estimate sea ice freeboard and thickness values with a higher measuring accuracy than that achievable with data provided by previous altimeter satellites. This study developed an improved algorithm considering variable lead proportions based on the lowest point method to derive the sea surface height for the retrieval of Antarctic sea ice freeboard and thickness values from ICESat-2 ATL-07 data. We first collocated ICESat-2 tracks to corresponding Sentinel-1 SAR images and calculated lead (seawater) proportions along each track to estimate the sea surface height in the Antarctic Ocean. Then, the Antarctic sea ice freeboard and thickness were estimated based on a local sea surface height reference and a static equilibrium equation. Finally, we assessed the accuracy of our improved algorithm and ICESat-2 data product in the retrieval of the Antarctic sea ice thickness by comparing the calculated values to ship-based observational sea ice thickness values acquired during the 35th Chinese Antarctic Research Expedition (CHINARE-35). The results indicate that the Antarctic sea ice freeboard estimated with the improved lowest point method was slightly larger than that estimated with the ICESat-2 data product algorithm. The root mean squared error (RMSE) of the improved lowest point method was 35 cm with the CHINARE-35 measured sea ice thickness, which was smaller than that determined with the ICESat-2 data product algorithm (65 cm). Our improved algorithm could provide more accurate data on the Antarctic sea ice freeboard and thickness, thus supporting Antarctic sea ice monitoring and the evaluation of its change under global effects.
Collapse
|