1
|
Fennine C, Favaro R, Khomenko I, Biasioli F, Cappellin L, Angeli S. Diel rhythm of volatile emissions from males and females of the olive fruit fly Bactrocera oleae using PTR-ToF and GC-MS. JOURNAL OF INSECT PHYSIOLOGY 2024; 153:104596. [PMID: 38072186 DOI: 10.1016/j.jinsphys.2023.104596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
The olive fruit fly Bactrocera oleae, is the major key pest of olive groves worldwide. As an odor-driven species, its intraspecific communication has been thoroughly investigated, yielding a combination of spiroacetals, esters and hydrocarbons. However, its management with pheromone is still restricted to olean, the major pheromone component. Given the crucial role of circadian rhythm and pheromone blends in mediating flies reproductive behavior compared to single compounds, B. oleae headspace chemical profile was carefully examined, through the combination of Proton Transfer Reaction Time of Flight Mass Spectrometry (PTR-ToF) and Gas Chromatography coupled with Mass Spectrometry (GC-MS). This novel approach aimed at continuously investigating the temporal scale of volatilome profile of B. oleae individuals, as well as the determination of new candidate sex-borne compounds (particularly those emitted in traces or having low molecular weight), that may be relevant to the fly's chemical communication and were unreported due to limitations of frequently used analytical techniques. Our results describe the dynamics and diversity of B. oleae chemical profile, highlighting the emission of 90 compounds, with clear diel rhythm of release, of known pheromone components of B. oleae (e.g., olean, alpha-pinene and muscalure) and new candidates. In contrast to ammonia, acetaldehyde and muscalure, which were highly emitted during the afternoon by males and mixed groups, olean was mostly released by mature females and mixed groups, with a peak of emission during early-morning and afternoon. This emission of olean around dawn is reported for the first time, suggesting early-morning mating activity in B. oleae. Furthermore, esters, such as methyl tetradecanoate, which had been earlier identified as a pheromone for B. oleae, did not exhibit any discernible release patterns. These findings are the first to demonstrate the emission of chemicals, which are only produced when males and females are close to one another, with an emission peak during the afternoon (mating period), and that may have aphrodisiac properties for B. oleae males. These results emphasize the relevance of compounds with distinct diel rhythm and address their potential function as intraspecific messengers, according to their source and timing of release.
Collapse
Affiliation(s)
- Chaymae Fennine
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy.
| | - Riccardo Favaro
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| | - Iuliia Khomenko
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Franco Biasioli
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Luca Cappellin
- Department of Chemistry, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Sergio Angeli
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy; Competence Centre for Plant Health, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| |
Collapse
|
2
|
False positives from impurities result in incorrect functional characterization of receptors in chemosensory studies. Prog Neurobiol 2019; 181:101661. [DOI: 10.1016/j.pneurobio.2019.101661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/24/2019] [Accepted: 07/06/2019] [Indexed: 12/11/2022]
|
3
|
Li S, Harley PC, Niinemets Ü. Ozone-induced foliar damage and release of stress volatiles is highly dependent on stomatal openness and priming by low-level ozone exposure in Phaseolus vulgaris. PLANT, CELL & ENVIRONMENT 2017; 40:1984-2003. [PMID: 28623868 PMCID: PMC5788268 DOI: 10.1111/pce.13003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 05/03/2023]
Abstract
Acute ozone exposure triggers major emissions of volatile organic compounds (VOCs), but quantitatively, it is unclear how different ozone doses alter the start and the total amount of these emissions, and the induction rate of different stress volatiles. It is also unclear whether priming (i.e. pre-exposure to lower O3 concentrations) can modify the magnitude and kinetics of volatile emissions. We investigated photosynthetic characteristics and VOC emissions in Phaseolus vulgaris following acute ozone exposure (600 nmol mol-1 for 30 min) under illumination and in darkness and after priming with 200 nmol mol-1 O3 for 30 min. Methanol and lipoxygenase (LOX) pathway product emissions were induced rapidly, followed by moderate emissions of methyl salicylate (MeSA). Stomatal conductance prior to acute exposure was lower in darkness and after low O3 priming than in light and without priming. After low O3 priming, no MeSA and lower LOX emissions were detected under acute exposure. Overall, maximum emission rates and the total amount of emitted LOX products and methanol were quantitatively correlated with total stomatal ozone uptake. These results indicate that different stress volatiles scale differently with ozone dose and highlight the key role of stomatal conductance in controlling ozone uptake, leaf injury and volatile release.
Collapse
Affiliation(s)
- Shuai Li
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014, Tartu, Estonia
| | - Peter C Harley
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014, Tartu, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014, Tartu, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia
| |
Collapse
|
4
|
Capozzi V, Makhoul S, Aprea E, Romano A, Cappellin L, Sanchez Jimena A, Spano G, Gasperi F, Scampicchio M, Biasioli F. PTR-MS Characterization of VOCs Associated with Commercial Aromatic Bakery Yeasts of Wine and Beer Origin. Molecules 2016; 21:483. [PMID: 27077836 PMCID: PMC6274548 DOI: 10.3390/molecules21040483] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 11/16/2022] Open
Abstract
In light of the increasing attention towards “green” solutions to improve food quality, the use of aromatic-enhancing microorganisms offers the advantage to be a natural and sustainable solution that did not negatively influence the list of ingredients. In this study, we characterize, for the first time, volatile organic compounds (VOCs) associated with aromatic bakery yeasts. Three commercial bakery starter cultures, respectively formulated with three Saccharomyces cerevisiae strains, isolated from white wine, red wine, and beer, were monitored by a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), a direct injection analytical technique for detecting volatile organic compounds with high sensitivity (VOCs). Two ethanol-related peaks (m/z 65.059 and 75.080) described qualitative differences in fermentative performances. The release of compounds associated to the peaks at m/z 89.059, m/z 103.075, and m/z 117.093, tentatively identified as acetoin and esters, are coherent with claimed flavor properties of the investigated strains. We propose these mass peaks and their related fragments as biomarkers to optimize the aromatic performances of commercial preparations and for the rapid massive screening of yeast collections.
Collapse
Affiliation(s)
- Vittorio Capozzi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige 38010, Italy.
- Faculty of Science and Technology, Free University of Bolzano, Bolzano 39100, Italy.
- Department of Agriculture, Food and Environment Sciences, University of Foggia, via Napoli 25, Foggia 71122, Italy.
| | - Salim Makhoul
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige 38010, Italy.
- L'Unité Mixte de Recherche Procédés Alimentaires et Microbiologiques-L'équipe Vin Aliment Microbiologie et Stress, Institut Universitaire de la Vigne et du Vin, 1 rue Claude Ladrey, Dijon Cedex 21078, France.
- Department of Chemistry, University of Balamand, P. O. Box 100, Tripoli, Lebanon.
| | - Eugenio Aprea
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige 38010, Italy.
| | - Andrea Romano
- Faculty of Science and Technology, Free University of Bolzano, Bolzano 39100, Italy.
| | - Luca Cappellin
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige 38010, Italy.
| | - Ana Sanchez Jimena
- Lallemand SAS, Lallemand Baking Solution Department, a Subsidiary of Lallemand Inc., Blagnac 31702, France.
| | - Giuseppe Spano
- Department of Agriculture, Food and Environment Sciences, University of Foggia, via Napoli 25, Foggia 71122, Italy.
| | - Flavia Gasperi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige 38010, Italy.
| | - Matteo Scampicchio
- Faculty of Science and Technology, Free University of Bolzano, Bolzano 39100, Italy.
| | - Franco Biasioli
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige 38010, Italy.
| |
Collapse
|
5
|
PTR-MS in Italy: a multipurpose sensor with applications in environmental, agri-food and health science. SENSORS 2013; 13:11923-55. [PMID: 24021966 PMCID: PMC3821335 DOI: 10.3390/s130911923] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/23/2013] [Accepted: 08/27/2013] [Indexed: 11/17/2022]
Abstract
Proton Transfer Reaction Mass Spectrometry (PTR-MS) has evolved in the last decade as a fast and high sensitivity sensor for the real-time monitoring of volatile compounds. Its applications range from environmental sciences to medical sciences, from food technology to bioprocess monitoring. Italian scientists and institutions participated from the very beginning in fundamental and applied research aiming at exploiting the potentialities of this technique and providing relevant methodological advances and new fundamental indications. In this review we describe this activity on the basis of the available literature. The Italian scientific community has been active mostly in food science and technology, plant physiology and environmental studies and also pioneered the applications of the recently released PTR-ToF-MS (Proton Transfer Reaction-Time of Flight-Mass Spectrometry) in food science and in plant physiology. In the very last years new results related to bioprocess monitoring and health science have been published as well. PTR-MS data analysis, particularly in the case of the ToF based version, and the application of advanced chemometrics and data mining are also aspects characterising the activity of the Italian community.
Collapse
|
6
|
Real-time measurement of volatile chemicals released by bed bugs during mating activities. PLoS One 2012; 7:e50981. [PMID: 23227225 PMCID: PMC3515544 DOI: 10.1371/journal.pone.0050981] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 10/30/2012] [Indexed: 11/30/2022] Open
Abstract
In recent years, bed bug (Hemiptera: Cimicidae) problems have increased dramatically in many parts of the world, leading to a renewed interest in their chemical ecology. Most studies of bed bug semiochemicals have been based on the collection of volatiles over a period of time followed by chemical analysis. Here we present for the first time, a combination of proton transfer reaction mass spectrometry and video analysis for real-time measurement of semiochemicals emitted by isolated groups of bed bugs during specific behavioural activities. The most distinct peaks in the proton transfer reaction mass spectrometry recordings were always observed close to the termination of mating attempts, corresponding to the defensive emissions that bed bugs have been suspected to exploit for prevention of unwanted copulations. The main components of these emissions were (E)-2-hexenal and (E)-2-octenal recorded in ratios between 1∶3 and 3∶1. In the current study, the quantity varied over 1000 fold for both of the compounds with up to 40 µg total release in a single emission. Males also emit defensive compounds due to homosexual copulation attempts by other males, and no significant differences were observed in the ratio or the amount of the two components released from males or females. In summary, this study has demonstrated that combining proton-transfer-reaction mass spectrometry with video analysis can provide detailed information about semiochemicals emitted during specific behavioural activities.
Collapse
|
7
|
Løkke MM, Edelenbos M, Larsen E, Feilberg A. Investigation of volatiles emitted from freshly cut onions (Allium cepa L.) by real time proton-transfer reaction-mass spectrometry (PTR-MS). SENSORS 2012; 12:16060-76. [PMID: 23443367 PMCID: PMC3571771 DOI: 10.3390/s121216060] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/30/2012] [Accepted: 11/08/2012] [Indexed: 11/24/2022]
Abstract
Volatile organic compounds (VOCs) in cut onions (Allium cepa L.) were continuously measured by PTR-MS during the first 120 min after cutting. The headspace composition changed rapidly due to the very reactive volatile sulfurous compounds emitted from onion tissue after cell disruption. Mass spectral signals corresponding to propanethial S-oxide (the lachrymatory factor) and breakdown products of this compound dominated 0–10 min after cutting. Subsequently, propanethiol and dipropyl disulfide predominantly appeared, together with traces of thiosulfinates. The concentrations of these compounds reached a maximum at 60 min after cutting. Propanethiol was present in highest concentrations and had an odor activity value 20 times higher than dipropyl disulfide. Thus, propanethiol is suggested to be the main source of the characteristic onion odor. Monitoring the rapid changes of VOCs in the headspace of cut onion necessitates a high time resolution, and PTR-MS is demonstrated to be a very suitable method for monitoring the headspace of freshly cut onions directly after cutting without extraction or pre-concentration.
Collapse
Affiliation(s)
- Mette Marie Løkke
- Department of Engineering, Aarhus University, Blichers Allé 20, P.O. Box 50, Tjele DK-8830, Denmark; E-Mail:
- Department of Food Science, Aarhus University, Kirstinebjergvej 10, Aarslev DK-5792, Denmark; E-Mails: (M.E.); (E.L.)
| | - Merete Edelenbos
- Department of Food Science, Aarhus University, Kirstinebjergvej 10, Aarslev DK-5792, Denmark; E-Mails: (M.E.); (E.L.)
| | - Erik Larsen
- Department of Food Science, Aarhus University, Kirstinebjergvej 10, Aarslev DK-5792, Denmark; E-Mails: (M.E.); (E.L.)
| | - Anders Feilberg
- Department of Engineering, Aarhus University, Blichers Allé 20, P.O. Box 50, Tjele DK-8830, Denmark; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +45-8715-7647
| |
Collapse
|
8
|
Kim YH, Kim KH. Ultimate detectability of volatile organic compounds: how much further can we reduce their ambient air sample volumes for analysis? Anal Chem 2012; 84:8284-93. [PMID: 22934885 DOI: 10.1021/ac301792x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To understand the ultimately lowest detection range of volatile organic compounds (VOCs) in air, application of a high sensitivity analytical system was investigated by coupling thermal desorption (TD) technique with gas chromatography (GC) and time-of-flight (TOF) mass spectrometry (MS). The performance of the TD-GC/TOF MS system was evaluated using liquid standards of 19 target VOCs prepared in the range of 35 pg to 2.79 ng per μL. Studies were carried out using both total ion chromatogram (TIC) and extracted ion chromatogram (EIC) mode. EIC mode was used for calibration to reduce background and to improve signal-to-noise. The detectability of 19 target VOCs, if assessed in terms of method detection limit (MDL, per US EPA definition) and limit of detection (LOD), averaged 5.90 pg and 0.122 pg, respectively, with the mean coefficient of correlation (R(2)) of 0.9975. The minimum quantifiable mass of target analytes, when determined using real air samples by the TD-GC/TOF MS, is highly comparable to the detection limits determined experimentally by standard. In fact, volumes for the actual detection of the major aromatic VOCs like benzene, toluene, and xylene (BTX) in ambient air samples were as low as 1.0 mL in the 0.11-2.25 ppb range. It was thus possible to demonstrate that most target compounds including those in low abundance could be reliably quantified at concentrations down to 0.1 ppb at sample volumes of less than 10 mL. The unique sensitivity of this advanced analytical system can ultimately lead to a shift in field sampling strategy with smaller air sample volumes facilitating faster, simpler air sampling (e.g., use of gas syringes rather than the relative complexity of pumps or bags/canisters), with greatly reduced risk of analyte breakthrough and minimal interference, e.g., from atmospheric humidity. The improved detection limits offered by this system can also enhance accuracy and measurement precision.
Collapse
Affiliation(s)
- Yong-Hyun Kim
- Department of Environment and Energy, Sejong University, Seoul, Korea
| | | |
Collapse
|