1
|
Mai P, Hampl J, Baca M, Brauer D, Singh S, Weise F, Borowiec J, Schmidt A, Küstner JM, Klett M, Gebinoga M, Schroeder IS, Markert UR, Glahn F, Schumann B, Eckstein D, Schober A. MatriGrid® Based Biological Morphologies: Tools for 3D Cell Culturing. Bioengineering (Basel) 2022; 9:bioengineering9050220. [PMID: 35621498 PMCID: PMC9138054 DOI: 10.3390/bioengineering9050220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Recent trends in 3D cell culturing has placed organotypic tissue models at another level. Now, not only is the microenvironment at the cynosure of this research, but rather, microscopic geometrical parameters are also decisive for mimicking a tissue model. Over the years, technologies such as micromachining, 3D printing, and hydrogels are making the foundation of this field. However, mimicking the topography of a particular tissue-relevant substrate can be achieved relatively simply with so-called template or morphology transfer techniques. Over the last 15 years, in one such research venture, we have been investigating a micro thermoforming technique as a facile tool for generating bioinspired topographies. We call them MatriGrid®s. In this research account, we summarize our learning outcome from this technique in terms of the influence of 3D micro morphologies on different cell cultures that we have tested in our laboratory. An integral part of this research is the evolution of unavoidable aspects such as possible label-free sensing and fluidic automatization. The development in the research field is also documented in this account.
Collapse
Affiliation(s)
- Patrick Mai
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Jörg Hampl
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
- Correspondence: (J.H.); (A.S.); Tel.: +49-3677-6933387 (A.S.)
| | - Martin Baca
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Dana Brauer
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Sukhdeep Singh
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Frank Weise
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Justyna Borowiec
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - André Schmidt
- Placenta Lab, Department of Obstetrics, Jena University Hospital, 07747 Jena, Germany; (A.S.); (U.R.M.)
| | - Johanna Merle Küstner
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Maren Klett
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Michael Gebinoga
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Insa S. Schroeder
- Biophysics Division, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany;
| | - Udo R. Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, 07747 Jena, Germany; (A.S.); (U.R.M.)
| | - Felix Glahn
- Institute of Environmental Toxicology, Martin-Luther-University Halle-Wittenberg, 06097 Halle, Germany; (F.G.); (B.S.); (D.E.)
| | - Berit Schumann
- Institute of Environmental Toxicology, Martin-Luther-University Halle-Wittenberg, 06097 Halle, Germany; (F.G.); (B.S.); (D.E.)
| | - Diana Eckstein
- Institute of Environmental Toxicology, Martin-Luther-University Halle-Wittenberg, 06097 Halle, Germany; (F.G.); (B.S.); (D.E.)
| | - Andreas Schober
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
- Correspondence: (J.H.); (A.S.); Tel.: +49-3677-6933387 (A.S.)
| |
Collapse
|
2
|
Sanicola HW, Stewart CE, Mueller M, Ahmadi F, Wang D, Powell SK, Sarkar K, Cutbush K, Woodruff MA, Brafman DA. Guidelines for establishing a 3-D printing biofabrication laboratory. Biotechnol Adv 2020; 45:107652. [PMID: 33122013 DOI: 10.1016/j.biotechadv.2020.107652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022]
Abstract
Advanced manufacturing and 3D printing are transformative technologies currently undergoing rapid adoption in healthcare, a traditionally non-manufacturing sector. Recent development in this field, largely enabled by merging different disciplines, has led to important clinical applications from anatomical models to regenerative bioscaffolding and devices. Although much research to-date has focussed on materials, designs, processes, and products, little attention has been given to the design and requirements of facilities for enabling clinically relevant biofabrication solutions. These facilities are critical to overcoming the major hurdles to clinical translation, including solving important issues such as reproducibility, quality control, regulations, and commercialization. To improve process uniformity and ensure consistent development and production, large-scale manufacturing of engineered tissues and organs will require standardized facilities, equipment, qualification processes, automation, and information systems. This review presents current and forward-thinking guidelines to help design biofabrication laboratories engaged in engineering model and tissue constructs for therapeutic and non-therapeutic applications.
Collapse
Affiliation(s)
- Henry W Sanicola
- Faculty of Medicine, The University of Queensland, Brisbane 4006, Australia
| | - Caleb E Stewart
- Department of Neurosurgery, Louisiana State Health Sciences Center, Shreveport, LA 71103, USA.
| | | | - Farzad Ahmadi
- Department of Electrical and Computer Engineering, Youngstown State University, Youngstown, OH 44555, USA
| | - Dadong Wang
- Quantitative Imaging Research Team, Data61, Commonwealth Scientific and Industrial Research Organization, Marsfield, NSW 2122, Australia
| | - Sean K Powell
- Science and Engineering Faculty, Queensland University of Technology, Brisbane 4029, Australia
| | - Korak Sarkar
- M3D Laboratory, Ochsner Health System, New Orleans, LA 70121, USA
| | - Kenneth Cutbush
- Faculty of Medicine, The University of Queensland, Brisbane 4006, Australia
| | - Maria A Woodruff
- Science and Engineering Faculty, Queensland University of Technology, Brisbane 4029, Australia.
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
3
|
Zhou W, Graham K, Lucendo-Villarin B, Flint O, Hay DC, Bagnaninchi P. Combining stem cell-derived hepatocytes with impedance sensing to better predict human drug toxicity. Expert Opin Drug Metab Toxicol 2018; 15:77-83. [PMID: 30572740 DOI: 10.1080/17425255.2019.1558208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background: The liver plays a central role in human drug metabolism. To model drug metabolism, the major cell type of the liver, the hepatocyte, is commonly used. Hepatocytes can be derived from human and animal sources, including pluripotent stem cells. Cell-based models have shown promise in modeling human drug exposure. The assays used in those studies are normally 'snap-shot' in nature, and do not provide the complete picture of human drug exposure. Research design and methods: In this study, we employ stem cell-derived hepatocytes and impedance sensing to model human drug toxicity. This impedance-based stem cell assay reports hepatotoxicity in real time after treatment with compounds provided by industry. Results: Using electric cell-substrate impedance Sensing (ECIS), we were able to accurately measure drug toxicity post-drug exposure in real time and more quickly than gold standard biochemical assays. Conclusions: ECIS is robust and non-destructive methodology capable of monitoring human drug exposure with superior performance to current gold standard 'snapshot' assays. We believe that the methodology presented within this article could prove valuable in the quest to better predict off-target effects of drugs in humans.
Collapse
Affiliation(s)
- Wenli Zhou
- a Department of Medical Oncology , Changzheng Hospital, Navy medical University , Shanghai , China
| | - Karen Graham
- b MRC Centre for Regenerative Medicine, 5 Little France Drive , University of Edinburgh , Edinburgh , UK
| | - Baltasar Lucendo-Villarin
- b MRC Centre for Regenerative Medicine, 5 Little France Drive , University of Edinburgh , Edinburgh , UK
| | - Oliver Flint
- b MRC Centre for Regenerative Medicine, 5 Little France Drive , University of Edinburgh , Edinburgh , UK
| | - David C Hay
- b MRC Centre for Regenerative Medicine, 5 Little France Drive , University of Edinburgh , Edinburgh , UK
| | - Pierre Bagnaninchi
- b MRC Centre for Regenerative Medicine, 5 Little France Drive , University of Edinburgh , Edinburgh , UK
| |
Collapse
|
4
|
Rico-Varela J, Ho D, Wan LQ. In Vitro Microscale Models for Embryogenesis. ADVANCED BIOSYSTEMS 2018; 2:1700235. [PMID: 30533517 PMCID: PMC6286056 DOI: 10.1002/adbi.201700235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 12/15/2022]
Abstract
Embryogenesis is a highly regulated developmental process requiring complex mechanical and biochemical microenvironments to give rise to a fully developed and functional embryo. Significant efforts have been taken to recapitulate specific features of embryogenesis by presenting the cells with developmentally relevant signals. The outcomes, however, are limited partly due to the complexity of this biological process. Microtechnologies such as micropatterned and microfluidic systems, along with new emerging embryonic stem cell-based models, could potentially serve as powerful tools to study embryogenesis. The aim of this article is to review major studies involving the culturing of pluripotent stem cells using different geometrical patterns, microfluidic platforms, and embryo/embryoid body-on-a-chip modalities. Indeed, new research opportunities have emerged for establishing in vitro culture for studying human embryogenesis and for high-throughput pharmacological testing platforms and disease models to prevent defects in early stages of human development.
Collapse
Affiliation(s)
- Jennifer Rico-Varela
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180
| | - Dominic Ho
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180
| | - Leo Q. Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180
- Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180
| |
Collapse
|
5
|
A Quartz Crystal Microbalance Immunosensor for Stem Cell Selection and Extraction. SENSORS 2017; 17:s17122747. [PMID: 29182568 PMCID: PMC5751627 DOI: 10.3390/s17122747] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 02/07/2023]
Abstract
A cost-effective immunosensor for the detection and isolation of dental pulp stem cells (DPSCs) based on a quartz crystal microbalance (QCM) has been developed. The recognition mechanism relies on anti-CD34 antibodies, DPSC-specific monoclonal antibodies that are anchored on the surface of the quartz crystals. Due to its high specificity, real time detection, and low cost, the proposed technology has a promising potential in the field of cell biology, for the simultaneous detection and sorting of stem cells from heterogeneous cell samples. The QCM surface was properly tailored through a biotinylated self-assembled monolayer (SAM). The biotin–avidin interaction was used to immobilize the biotinylated anti-CD34 antibody on the gold-coated quartz crystal. After antibody immobilization, a cellular pellet, with a mixed cell population, was analyzed; the results indicated that the developed QCM immunosensor is highly specific, being able to detect and sort only CD34+ cells. Our study suggests that the proposed technology can detect and efficiently sort any kind of cell from samples with high complexity, being simple, selective, and providing for more convenient and time-saving operations.
Collapse
|
6
|
Zou Y, Feng H, Ouyang H, Jin Y, Yu M, Liu Z, Li Z. The modulation effect of the convexity of silicon topological nanostructures on the growth of mesenchymal stem cells. RSC Adv 2017. [DOI: 10.1039/c7ra00542c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The convexity of topological nanostructures, as analyzed by grey-level histogram and fast Fourier transformation, has important modulation effects on the size expansion and filopodia generation of mesenchymal stem cells.
Collapse
Affiliation(s)
- Yang Zou
- Beijing Institute of Nanoenergy and Nanosystems
- Chinese Academy of Sciences
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- P. R. China
| | - Hongqing Feng
- Beijing Institute of Nanoenergy and Nanosystems
- Chinese Academy of Sciences
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- P. R. China
| | - Han Ouyang
- Beijing Institute of Nanoenergy and Nanosystems
- Chinese Academy of Sciences
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- P. R. China
| | - Yiming Jin
- Beijing Institute of Nanoenergy and Nanosystems
- Chinese Academy of Sciences
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- P. R. China
| | - Min Yu
- Beijing Institute of Nanoenergy and Nanosystems
- Chinese Academy of Sciences
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- P. R. China
| | - Zhuo Liu
- Beijing Institute of Nanoenergy and Nanosystems
- Chinese Academy of Sciences
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- P. R. China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems
- Chinese Academy of Sciences
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- P. R. China
| |
Collapse
|
7
|
Sapudom J, Rubner S, Martin S, Pompe T. Mimicking Tissue Boundaries by Sharp Multiparameter Matrix Interfaces. Adv Healthc Mater 2016; 5:1861-7. [PMID: 27125887 DOI: 10.1002/adhm.201600295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 12/30/2022]
Abstract
Engineering interfaces of distinct extracellular compartments mimicking native tissues are key for in-depth in vitro studies on developmental and disease processes in biology and medicine. Sharp interfaces of extracellular matrices are constructed based on fibrillar collagen I networks with a multiparameter control of topology, mechanics, and composition, and their distinct impact on triggering the directionality of cancer cell migration is demonstrated.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Institute of Biochemistry; Universität Leipzig; 04103 Leipzig Germany
| | - Stefan Rubner
- Institute of Biochemistry; Universität Leipzig; 04103 Leipzig Germany
| | - Steve Martin
- Institute of Biochemistry; Universität Leipzig; 04103 Leipzig Germany
| | - Tilo Pompe
- Institute of Biochemistry; Universität Leipzig; 04103 Leipzig Germany
| |
Collapse
|
8
|
Jonczyk R, Kurth T, Lavrentieva A, Walter JG, Scheper T, Stahl F. Living Cell Microarrays: An Overview of Concepts. MICROARRAYS (BASEL, SWITZERLAND) 2016; 5:E11. [PMID: 27600077 PMCID: PMC5003487 DOI: 10.3390/microarrays5020011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 02/06/2023]
Abstract
Living cell microarrays are a highly efficient cellular screening system. Due to the low number of cells required per spot, cell microarrays enable the use of primary and stem cells and provide resolution close to the single-cell level. Apart from a variety of conventional static designs, microfluidic microarray systems have also been established. An alternative format is a microarray consisting of three-dimensional cell constructs ranging from cell spheroids to cells encapsulated in hydrogel. These systems provide an in vivo-like microenvironment and are preferably used for the investigation of cellular physiology, cytotoxicity, and drug screening. Thus, many different high-tech microarray platforms are currently available. Disadvantages of many systems include their high cost, the requirement of specialized equipment for their manufacture, and the poor comparability of results between different platforms. In this article, we provide an overview of static, microfluidic, and 3D cell microarrays. In addition, we describe a simple method for the printing of living cell microarrays on modified microscope glass slides using standard DNA microarray equipment available in most laboratories. Applications in research and diagnostics are discussed, e.g., the selective and sensitive detection of biomarkers. Finally, we highlight current limitations and the future prospects of living cell microarrays.
Collapse
Affiliation(s)
- Rebecca Jonczyk
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany.
| | - Tracy Kurth
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany.
| | - Antonina Lavrentieva
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany.
| | - Johanna-Gabriela Walter
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany.
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany.
| | - Frank Stahl
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany.
| |
Collapse
|
9
|
Sciancalepore AG, Portone A, Moffa M, Persano L, De Luca M, Paiano A, Sallustio F, Schena FP, Bucci C, Pisignano D. Micropatterning control of tubular commitment in human adult renal stem cells. Biomaterials 2016; 94:57-69. [PMID: 27105437 DOI: 10.1016/j.biomaterials.2016.03.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 03/19/2016] [Accepted: 03/28/2016] [Indexed: 12/12/2022]
Abstract
The treatment of renal injury by autologous, patient-specific adult stem cells is still an unmet need. Unsolved issues remain the spatial integration of stem cells into damaged areas of the organ, the commitment in the required cell type and the development of improved bioengineered devices. In this respect, biomaterials and architectures have to be specialized to control stem cell differentiation. Here, we perform an extensive study on micropatterned extracellular matrix proteins, which constitute a simple and non-invasive approach to drive the differentiation of adult renal progenitor/stem cells (ARPCs) from human donors. ARPCs are interfaced with fibronectin (FN) micropatterns, in the absence of exogenous chemicals or cellular reprogramming. We obtain the differentiation towards tubular cells of ARPCs cultured in basal medium conditions, the tubular commitment thus being specifically induced by micropatterned substrates. We characterize the stability of the tubular differentiation as well as the induction of a polarized phenotype in micropatterned ARPCs. Thus, the developed cues, driving the functional commitment of ARPCs, offer a route to recreate the microenvironment of the stem cell niche in vitro, that may serve, in perspective, for the development of ARPC-based bioengineered devices.
Collapse
Affiliation(s)
- Anna G Sciancalepore
- Istituto Nanoscienze-CNR, Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT), via Arnesano, 73100 Lecce, Italy; Center for Biomolecular Nanotechnologies @UNILE, Istituto Italiano di Tecnologia, via Barsanti, 73010 Arnesano, Lecce, Italy.
| | - Alberto Portone
- Istituto Nanoscienze-CNR, Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT), via Arnesano, 73100 Lecce, Italy; Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento, via Arnesano, 73100 Lecce, Italy
| | - Maria Moffa
- Istituto Nanoscienze-CNR, Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT), via Arnesano, 73100 Lecce, Italy; Center for Biomolecular Nanotechnologies @UNILE, Istituto Italiano di Tecnologia, via Barsanti, 73010 Arnesano, Lecce, Italy
| | - Luana Persano
- Istituto Nanoscienze-CNR, Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT), via Arnesano, 73100 Lecce, Italy
| | - Maria De Luca
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, via Provinciale Monteroni, 73100 Lecce, Italy
| | - Aurora Paiano
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, via Provinciale Monteroni, 73100 Lecce, Italy
| | - Fabio Sallustio
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; Centro Addestramento Ricerca Scientifica in Oncologia (C.A.R.S.O.) Consortium, Strada Prov. le Valenzano-Casamassima, 70010 Valenzano, Italy
| | - Francesco P Schena
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; Centro Addestramento Ricerca Scientifica in Oncologia (C.A.R.S.O.) Consortium, Strada Prov. le Valenzano-Casamassima, 70010 Valenzano, Italy
| | - Cecilia Bucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, via Provinciale Monteroni, 73100 Lecce, Italy
| | - Dario Pisignano
- Istituto Nanoscienze-CNR, Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT), via Arnesano, 73100 Lecce, Italy; Center for Biomolecular Nanotechnologies @UNILE, Istituto Italiano di Tecnologia, via Barsanti, 73010 Arnesano, Lecce, Italy; Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento, via Arnesano, 73100 Lecce, Italy.
| |
Collapse
|
10
|
Tyagi D, Perez JB, Nand A, Zhiqiang C, Wang P, Na J, Zhu J. Detection of embryonic stem cell lysate biomarkers by surface plasmon resonance with reduced nonspecific adsorption. Anal Biochem 2014; 471:29-37. [PMID: 25447493 DOI: 10.1016/j.ab.2014.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/29/2014] [Accepted: 11/01/2014] [Indexed: 12/11/2022]
Abstract
Surface plasmon resonance imaging (SPRi) has emerged as a versatile biosensor to detect a wide range of biomolecular interactions with divergent potential applications. However, the use of this advanced-level technology for stem cell lysate study is still not much explored. Cell lysates are significant biological analytes used for disease diagnostics and proteomic studies, but their complex nature limits their use as an analyte for SPRi biosensors. Here, we review the problems associated with the use of SPRi for stem cell lysate study and examine the role of surface chemistry, running buffer, and blocking solution in order to minimize nonspecific adsorption (NSA). We detect the expression of Oct4, Sox2, Nanog, Rex1, and Lin28 biomarkers present in mouse embryonic stem cell (mESC) lysate against their corresponding antibodies immobilized on the sensor surface with reduced NSA. The current study shows that the conjunction of SPRi and microarray can be used as a label-free, high-throughput, and rapid technique for detection of biomarkers and their relative abundance in stem cell lysate study.
Collapse
Affiliation(s)
- Deependra Tyagi
- National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Javier Batista Perez
- National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Amita Nand
- National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Zhiqiang
- National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Peizhe Wang
- Centre for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jie Na
- Centre for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jingsong Zhu
- National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Kienast R, Stöger M, Handler M, Hanser F, Baumgartner C. Alterations of field potentials in isotropic cardiomyocyte cell layers induced by multiple endogenous pacemakers under normal and hypothermal conditions. Am J Physiol Heart Circ Physiol 2014; 307:H1013-23. [DOI: 10.1152/ajpheart.00097.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The use of autonomous contracting randomly grown cardiomyocyte monolayers cultivated on microelectrode arrays (MEAs) represents an accepted experimental setting for preclinical experimental research in the field of cardiac electrophysiology. A dominant pacemaker forces a monolayer to adhere to a regular and synchronized contraction. Randomly distributed multiple pacemakers interfere with this dominant center, resulting in more or less frequent changes of propagation direction. This study aims to characterize the impact of changing propagation directions at single electrodes of the MEA on the four intrinsic parameters of registered field potentials (FPs) FPrise, FPMIN, FPpre, and FPdur and conduction velocity (CV) under normal and hypothermal conditions. Primary cultures of chicken cardiomyocytes ( n = 18) were plated directly onto MEAs and FPs were recorded in a temperature range between 37 and 29°C. The number and spatiotemporal distribution of biological and artificial pacemakers of each cell layer inside and outside of the MEA registration area were evaluated using an algorithm developed in-house. In almost every second myocardial cell layer, interfering autonomous pacemakers were detected at stable temperatures, showing random spatial distributions with similar beating rates. Additionally, a temperature-dependent change of the dominant pacemaker center was observed in n = 16 experiments. A significant spread-direction-dependent variation of CV, FPrise, FPMIN, and FPpre up to 14% could be measured between different endogenous pacemakers. In conclusion, based on our results, disregarding the spatial origin of excitation may lead to misinterpretations and erroneous conclusions of FP parameters in the verification of research hypotheses in cellular electrocardiology.
Collapse
Affiliation(s)
- R. Kienast
- Institute of Electrical and Biomedical Engineering, University for Health Sciences, Medical Informatics and Technology, Hall in Tyrol, Austria; and
| | - M. Stöger
- Institute of Electrical and Biomedical Engineering, University for Health Sciences, Medical Informatics and Technology, Hall in Tyrol, Austria; and
- Division of Internal Medicine III/Cardiology, Medical University Innsbruck, Innsbruck, Austria
| | - M. Handler
- Institute of Electrical and Biomedical Engineering, University for Health Sciences, Medical Informatics and Technology, Hall in Tyrol, Austria; and
| | - F. Hanser
- Institute of Electrical and Biomedical Engineering, University for Health Sciences, Medical Informatics and Technology, Hall in Tyrol, Austria; and
| | - C. Baumgartner
- Institute of Electrical and Biomedical Engineering, University for Health Sciences, Medical Informatics and Technology, Hall in Tyrol, Austria; and
| |
Collapse
|
12
|
|