1
|
Ndagi U, Falaki AA, Abdullahi M, Lawal MM, Soliman ME. Antibiotic resistance: bioinformatics-based understanding as a functional strategy for drug design. RSC Adv 2020; 10:18451-18468. [PMID: 35685616 PMCID: PMC9122625 DOI: 10.1039/d0ra01484b] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022] Open
Abstract
The use of antibiotics to manage infectious diseases dates back to ancient civilization, but the lack of a clear distinction between the therapeutic and toxic dose has been a major challenge. This precipitates the notion that antibiotic resistance was from time immemorial, principally because of a lack of adequate knowledge of therapeutic doses and continuous exposure of these bacteria to suboptimal plasma concentration of antibiotics. With the discovery of penicillin by Alexander Fleming in 1924, a milestone in bacterial infections' treatment was achieved. This forms the foundation for the modern era of antibiotic drugs. Antibiotics such as penicillins, cephalosporins, quinolones, tetracycline, macrolides, sulphonamides, aminoglycosides and glycopeptides are the mainstay in managing severe bacterial infections, but resistant strains of bacteria have emerged and hampered the progress of research in this field. Recently, new approaches to research involving bacteria resistance to antibiotics have appeared; these involve combining the molecular understanding of bacteria systems with the knowledge of bioinformatics. Consequently, many molecules have been developed to curb resistance associated with different bacterial infections. However, because of increased emphasis on the clinical relevance of antibiotics, the synergy between in silico study and in vivo study is well cemented and this facilitates the discovery of potent antibiotics. In this review, we seek to give an overview of earlier reviews and molecular and structural understanding of bacteria resistance to antibiotics, while focusing on the recent bioinformatics approach to antibacterial drug discovery. Understanding the evolution of antibiotic resistance at the molecular level as a functional tool for bioinformatic-based drug design.![]()
Collapse
Affiliation(s)
- Umar Ndagi
- Centre for Trans-Sahara Disease, Vaccine and Drug Research
- Ibrahim Badamasi Babangida University
- Lapai
- Nigeria
| | - Abubakar A. Falaki
- Department of Microbiology
- School of Agriculture and Applied Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Maryam Abdullahi
- Faculty of Pharmaceutical Sciences
- Ahmadu Bello University Zaria
- Nigeria
| | - Monsurat M. Lawal
- School of Laboratory Medicine and Medical Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Mahmoud E. Soliman
- Molecular Modeling and Drug Design Research Group
- School of Health Sciences
- University of KwaZulu Natal
- Durban 4001
- South Africa
| |
Collapse
|
2
|
Chua KO, See-Too WS, Ee R, Lim YL, Yin WF, Chan KG. In silico Analysis Reveals Distribution of Quorum Sensing Genes and Consistent Presence of LuxR Solos in the Pandoraea Species. Front Microbiol 2019; 10:1758. [PMID: 31447806 PMCID: PMC6691176 DOI: 10.3389/fmicb.2019.01758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/16/2019] [Indexed: 01/11/2023] Open
Abstract
The most common quorum sensing (QS) system in Gram-negative bacteria consists of signaling molecules called N-acyl-homoserine lactones (AHLs), which are synthesized by an enzyme AHL synthase (LuxI) and detected by a transcriptional regulator (LuxR) that are usually located in close proximity. However, many recent studies have also evidenced the presence of LuxR solos that are LuxR-related proteins in Proteobacteria that are devoid of a cognate LuxI AHL synthase. Pandoraea species are opportunistic pathogens frequently isolated from sputum specimens of cystic fibrosis (CF) patients. We have previously shown that P. pnomenusa strains possess QS activity. In this study, we examined the presence of QS activity in all type strains of Pandoraea species and acquired their complete genome sequences for holistic bioinformatics analyses of QS-related genes. Only four out of nine type strains (P. pnomenusa, P. sputorum, P. oxalativorans, and P. vervacti) showed QS activity, and C8-HSL was the only AHL detected. A total of 10 canonical luxIs with adjacent luxRs were predicted by bioinformatics from the complete genomes of aforementioned species and publicly available Pandoraea genomes. No orphan luxI was identified in any of the genomes. However, genes for two LuxR solos (LuxR2 and LuxR3 solos) were identified in all Pandoraea genomes (except two draft genomes with one LuxR solo gene), and P. thiooxydans was the only species that harbored no QS-related activity and genes. Except the canonical LuxR genes, LuxIs and LuxR solos of Pandoraea species were distantly related to the other well-characterized QS genes based on phylogenetic clustering. LuxR2 and LuxR3 solos might represent two novel evolutionary branches of LuxR system as they were found exclusively only in the genus. As a few luxR solos were located in close proximity with prophage sequence regions in the genomes, we thus postulated that these luxR solos could be transmitted into genus Pandoraea by transduction process mediated by bacteriophage. The bioinformatics approach developed in this study forms the basis for further characterization of closely related species. Overall, our findings improve the current understanding of QS in Pandoraea species, which is a potential pharmacological target in battling Pandoraea infections in CF patients.
Collapse
Affiliation(s)
- Kah-Ooi Chua
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Wah-Seng See-Too
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Robson Ee
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Yan-Lue Lim
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,International Genome Centre, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Ee R, Madhaiyan M, Ji L, Lim YL, Nor NM, Tee KK, Chen JW, Yin WF. Chania multitudinisentens gen. nov., sp. nov., an N-acyl-homoserine-lactone-producing bacterium in the family Enterobacteriaceae isolated from landfill site soil. Int J Syst Evol Microbiol 2016; 66:2297-2304. [PMID: 26978486 DOI: 10.1099/ijsem.0.001025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phylogenetic and taxonomic characterization was performed for bacterium RB-25T, which was isolated from a soil sample collected in a former municipal landfill site in Puchong, Malaysia. Growth occurred at 20-37 °C at pH 5-8 but not in the presence of 9 % (w/v) NaCl or higher. The principal fatty acids were C16:0, C18:1ω7c and summed feature 3 (C16:1ω7c and/or iso-C15:0 2-OH). Ubiquinone-8 was the only isoprenoid quinone detected. Polar lipid analysis revealed the presence of phospholipid, phosphoaminolipid, phosphatidylethanolamine, phosphatidylglycerol and one unidentified aminolipid. DNA G+C content was 50.9 mol% phylogenetic analysis based on 16S rRNA gene sequence showed that strain RB-25T formed a distinct lineage within the family Enterobacteriaceae of the class Gammaproteobacteria. It exhibited a low level of 16S rRNA gene sequence similarity with its phylogenetic neighbours Pantoea rwandensis LMG 26275T (96.6 %), Rahnella aquatilis CIP 78.65T (96.5 %), Pectobacterium betavasculorum ATCC 43762T (96.4 %), Pantoea rodasii LMG 26273T (96.3 %), Gibbsiella dentisursi NUM 1720T (96.3 %) and Serratia glossinae C1T (96.2 %). Multilocus sequence analyses based on fusA, pyrG, rplB, rpoB and sucA sequences showed a clear distinction of strain RB-25T from the most closely related genera. Isolate RB-25T could also be distinguished from members of these genera by a combination of the DNA G+C content, respiratory quinone system, fatty acid profile, polar lipid composition and other phenotypic features. Strain RB-25T represents a novel species of a new genus, for which the name Chaniamultitudinisentens gen. nov., sp. nov. is proposed. The type strain is RB-25T (=DSM 28811T=LMG 28304T).
Collapse
Affiliation(s)
- Robson Ee
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Munusamy Madhaiyan
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Lianghui Ji
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Yan-Lue Lim
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Nuruddin Muhammad Nor
- Department of Microbiology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kok-Keng Tee
- Centre of Excellence for Research in AIDS (CERiA), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Jian-Woon Chen
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
4
|
Lim YL, Ee R, Yong D, Tee KK, Yin WF, Chan KG. Complete genome of Pandoraea pnomenusa RB-38, an oxalotrophic bacterium isolated from municipal solid waste landfill site. J Biotechnol 2015; 214:83-4. [PMID: 26393955 DOI: 10.1016/j.jbiotec.2015.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 10/23/2022]
Abstract
Pandoraea pnomenusa RB-38 is a bacterium isolated from a former sanitary landfill site. Here, we present the complete genome of P. pnomenusa RB38 in which an oxalate utilization pathway was identified. The genome analysis suggested the potential of this strain as an effective biocontrol agent against oxalate-producing phytopathogens.
Collapse
Affiliation(s)
- Yan-Lue Lim
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Robson Ee
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Delicia Yong
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kok-Keng Tee
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
Lim YL, Ee R, How KY, Lee SK, Yong D, Tee KK, Yin WF, Chan KG. Complete genome sequencing of Pandoraea pnomenusa RB38 and Molecular Characterization of Its N-acyl homoserine lactone synthase gene ppnI. PeerJ 2015; 3:e1225. [PMID: 26336650 PMCID: PMC4556143 DOI: 10.7717/peerj.1225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/11/2015] [Indexed: 01/05/2023] Open
Abstract
In this study, we sequenced the genome of Pandoraea pnomenusa RB38 using Pacific Biosciences RSII (PacBio) Single Molecule Real Time (SMRT) sequencing technology. A pair of cognate luxI/R homologs was identified where the luxI homolog, ppnI, was found adjacent to a luxR homolog, ppnR1. An additional orphan luxR homolog, ppnR2, was also discovered. Multiple sequence alignment and phylogenetic analysis revealed that ppnI is an N-acyl homoserine lactone (AHL) synthase gene that is distinct from those of the nearest phylogenetic neighbor viz. Burkholderia spp. High resolution tandem mass spectrometry (LC-MS/MS) analysis showed that Escherichia coli BL21 harboring ppnI produced a similar AHL profile (N-octanoylhomoserine lactone, C8-HSL) as P. pnomenusa RB38, the wild-type donor strain, confirming that PpnI directed the synthesis of AHL in P. pnomenusa RB38. To our knowledge, this is the first documentation of the luxI/R homologs of the genus Pandoraea.
Collapse
Affiliation(s)
- Yan-Lue Lim
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya , Kuala Lumpur , Malaysia
| | - Robson Ee
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya , Kuala Lumpur , Malaysia
| | - Kah-Yan How
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya , Kuala Lumpur , Malaysia
| | - Siew-Kim Lee
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya , Kuala Lumpur , Malaysia
| | - Delicia Yong
- Department of Medicine, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Kok Keng Tee
- Department of Medicine, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya , Kuala Lumpur , Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|