1
|
Manzoor M, Lommi S, Furuholm J, Sarkkola C, Engberg E, Raju S, Viljakainen H. High abundance of sugar metabolisers in saliva of children with caries. Sci Rep 2021; 11:4424. [PMID: 33627735 PMCID: PMC7904847 DOI: 10.1038/s41598-021-83846-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/05/2021] [Indexed: 11/17/2022] Open
Abstract
Dental caries is a biofilm-mediated, dynamic disease with early onset. A balanced salivary microbiota is a foundation of oral health, while dysbiosis causes tooth decay. We compared the saliva microbiota profiles in children with and without caries. The study consisted of 617 children aged 9–12 years from the Finnish Health in Teens (Fin-HIT) study with available register data on oral health. Caries status was summarised based on Decayed, Missing, and Filled Teeth (DMFT) index in permanent dentition. The children were then classified into the following two groups: DMFT value ≥ 1 was considered as cavitated caries lesions (hereafter called ‘caries’) (n = 208) and DMFT = 0 as ‘cavity free’ (n = 409). Bacterial 16S rRNA gene (V3–V4 regions) was amplified using PCR and sequenced by Illumina HiSeq. The mean age (SD) of the children was 11.7 (0.4) years and 56% were girls. The children had relatively good dental health with mean DMFT of 0.86 (1.97). Since sex was the key determinant of microbiota composition (p = 0.014), we focused on sex-stratified analysis. Alpha diversity indexes did not differ between caries and cavity free groups in either sexes (Shannon: p = 0.40 and 0.58; Inverse Simpson: p = 0.51 and 0.60, in boys and girls, respectively); neither did the composition differ between the groups (p = 0.070 for boys and p = 0.230 for girls). At the genus level, Paludibacter and Labrenzia had higher abundances in the caries group compared to cavity free group in both sexes (p < 0.001). Taken together, there were minor differences in saliva microbiota between children with and without caries. Potential biomarkers of caries were the sugar metabolisers Paludibacter and Labrenzia. These bacteria presumably enhance salivary acidification, which contributes to progression of dental caries. The clinical relevance of our findings warrants further studies.
Collapse
Affiliation(s)
| | - Sohvi Lommi
- Folkhälsan Research Center, Helsinki, Finland.,Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jussi Furuholm
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Elina Engberg
- Folkhälsan Research Center, Helsinki, Finland.,Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sajan Raju
- Folkhälsan Research Center, Helsinki, Finland
| | - Heli Viljakainen
- Folkhälsan Research Center, Helsinki, Finland. .,Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Raafat MM, Ali-Tammam M, Ali AE. Quorum quenching activity of Bacillus cereus isolate 30b confers antipathogenic effects in Pseudomonas aeruginosa. Infect Drug Resist 2019; 12:1583-1596. [PMID: 31239733 PMCID: PMC6559722 DOI: 10.2147/idr.s182889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 04/11/2019] [Indexed: 01/21/2023] Open
Abstract
Background: Quorum quenching, the interference of a Quorum sensing (QS) system that contributes to the pathogenesis through triggering the production of various virulence determinants, is among the newly suggested antivirulence strategies. Purpose: This study aimed at screening of N-Acyl homoserine lactonase activity from local bacterial isolate, and investigating its effect on Pseudomonas aeruginosa (P. aeruginosa) virulence and biofilm formation. Materials and methods: Soil bacteria were screened for aiiA gene coding for lactonase enzyme by Polymerase Chain reaction and sequencing of aiiA gene homologs. Lactonase activity and spectrum were assessed in the cell-free lysate by well diffusion assay using Agrobacterium tumafaciens KYC55. A bacterial isolate showing the highest N-acyl-homoserine lactones degradation percentage was identified by gene amplification and sequencing of the 16S rRNA gene and its aiiA gene homolog. High performance liquid chromatography was used to confirm N-acyl-homoserine lactone degradation. The effect of cell-free lysate on the biofilm formation ability and cytotoxicity of P. aeruginosa PAO1 and P. aeruginosa clinical isolates from different clinical sources were assessed by static microtiter plate and viability assay, respectively Results: Lactonase gene and activity were identified in three Bacillus spp. isolates. They showed broad catalytic activities against tested N-acyl-homoserine lactones. However, The lactonase activity in the cell- free lysate of isolate 30b showed the highest significant degradation percentage on all tested signals; N-butanoyl-L-homoserine lactone (71%), N-hexanoyl-l-homoserine lactone (100%), N-decanoyl-homoserine lactone (100%), N-(3-oxohexanoyl)-L-homoserine lactone (37.5%), N-(oxodecanoyl)-L-homoserine lactone (100%), and N-(3-oxododecanoyl)-L-homoserine lactone (100%). Alignment of the amino acid sequences of AiiA protein of isolate 30b showed 96% identity with Bacillus cereus (B. cereus) homologous lactonases in the GenBank database, and the isolate was designated as B. cereus isolate 30b. Cell-free lysate of B. cereus isolate 30b reduced biofilm formation significantly in 93% of P. aeruginosa isolates. The highest mean percentage of reduction in the biofilm was 86%. Moreover, the viability percentage of human lung carcinoma A549 cells infected by P. aeruginosa and treated with cell-free lysate of B. cereus isolate 30b increased up to 15%. Conclusion: The results of this study highlight the potential of lactonases as a promising strategy to combat Pseudomonas aeruginosa virulence.
Collapse
Affiliation(s)
- Marwa M Raafat
- Department of Microbiology & Immunology, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt (FUE), New Cairo, Egypt
| | - Marwa Ali-Tammam
- Department of Microbiology & Immunology, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt (FUE), New Cairo, Egypt
| | - Amal E Ali
- Department of Microbiology & Immunology, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt (FUE), New Cairo, Egypt
| |
Collapse
|
3
|
Zhao J, Li X, Hou X, Quan C, Chen M. Widespread Existence of Quorum Sensing Inhibitors in Marine Bacteria: Potential Drugs to Combat Pathogens with Novel Strategies. Mar Drugs 2019; 17:md17050275. [PMID: 31072008 PMCID: PMC6562741 DOI: 10.3390/md17050275] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
Quorum sensing (QS) is a phenomenon of intercellular communication discovered mainly in bacteria. A QS system consisting of QS signal molecules and regulatory protein components could control physiological behaviors and virulence gene expression of bacterial pathogens. Therefore, QS inhibition could be a novel strategy to combat pathogens and related diseases. QS inhibitors (QSIs), mainly categorized into small chemical molecules and quorum quenching enzymes, could be extracted from diverse sources in marine environment and terrestrial environment. With the focus on the exploitation of marine resources in recent years, more and more QSIs from the marine environment have been investigated. In this article, we present a comprehensive review of QSIs from marine bacteria. Firstly, screening work of marine bacteria with potential QSIs was concluded and these marine bacteria were classified. Afterwards, two categories of marine bacteria-derived QSIs were summarized from the aspects of sources, structures, QS inhibition mechanisms, environmental tolerance, effects/applications, etc. Next, structural modification of natural small molecule QSIs for future drug development was discussed. Finally, potential applications of QSIs from marine bacteria in human healthcare, aquaculture, crop cultivation, etc. were elucidated, indicating promising and extensive application perspectives of QS disruption as a novel antimicrobial strategy.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian 116600, China.
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Xinyun Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian 116600, China.
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Xiyan Hou
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian 116600, China.
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Chunshan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian 116600, China.
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Ming Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116600, China.
| |
Collapse
|
4
|
Wang L, Xu H, Liu Z, Sun T, Yuan C, Yang Y, Guo J, Xie H. Magnetic immobilization of a quorum sensing signal hydrolase, AiiA. Microbiologyopen 2019; 8:e00797. [PMID: 30767416 PMCID: PMC6692522 DOI: 10.1002/mbo3.797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 11/10/2022] Open
Abstract
Magnetic immobilization of quorum sensing (QS) signal hydrolases provides a convenient solution for quenching QS process that is essential for bacterial biofilm formation and antimicrobial resistance. In the present study, a QS signal hydrolase, AiiA, was fused with a magnetic protein, MagR, and expressed in Escherichia coli. Magnetic immobilization of AiiA was achieved on Fe3 O4 -SiO2 iron beads and was confirmed via SDS-PAGE, zeta potential measurement, FTIR spectrometry, and SEM analysis. The magnetic immobilized AiiA exhibited activity in degrading the quorum sensing signal, C6-HSL. This study opens a new avenue to actively immobilize enzymes via magnetic interaction and quench quorum sensing.
Collapse
Affiliation(s)
- Lin Wang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, China
| | - Haixing Xu
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, China
| | - Zewen Liu
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, China
| | - Chengqing Yuan
- School of Energy and Power Engineering, Wuhan University of Technology, Wuhan, China
| | - Ying Yang
- Institute for Science and Technology in Medicine, Keele University, Staffordshire, UK
| | - Junhui Guo
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, China
| | - Hao Xie
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
5
|
Kalia VC, Patel SKS, Kang YC, Lee JK. Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol Adv 2018; 37:68-90. [PMID: 30471318 DOI: 10.1016/j.biotechadv.2018.11.006] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/19/2018] [Accepted: 11/18/2018] [Indexed: 12/20/2022]
Abstract
The mechanisms through which microbes communicate using signal molecules has inspired a great deal of research. Microbes use this exchange of information, known as quorum sensing (QS), to initiate and perpetuate infectious diseases in eukaryotic organisms, evading the eukaryotic defense system by multiplying and expressing their pathogenicity through QS regulation. The major issue to arise from such networks is increased bacterial resistance to antibiotics, resulting from QS-dependent mediation of the formation of biofilm, the induction of efflux pumps, and the production of antibiotics. QS inhibitors (QSIs) of diverse origins have been shown to act as potential antipathogens. In this review, we focus on the use of QSIs to counter diseases in humans as well as plants and animals of economic importance. We also discuss the challenges encountered in the potential applications of QSIs.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 02841, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
6
|
Quorum quenching properties of Actinobacteria isolated from Malaysian tropical soils. Arch Microbiol 2017; 199:897-906. [PMID: 28364274 DOI: 10.1007/s00203-017-1371-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/25/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
In this study, a total of 147 soil actinobacterial strains were screened for their ability to inhibit response of Chromobacterium violaceum CV026 to short chain N-acyl homoserine lactone (AHL) which is a quorum sensing molecule. Of these, three actinobacterial strains showed positive for violacein inhibition. We further tested these strains for the inhibition of Pseudomonas aeruginosa PAO1 quorum sensing-regulated phenotypes, namely, swarming and pyocyanin production. The three strains were found to inhibit at least one of the quorum sensing-regulated phenotypes of PAO1. Phylogenetic analysis of the 16S rRNA gene sequences indicated that these strains belong to the genera Micromonospora, Rhodococcus and Streptomyces. This is the first report presenting quorum quenching activity by a species of the genus Micromonospora. Our data suggest that Actinobacteria may be a rich source of active compounds that can act against bacterial quorum sensing system.
Collapse
|
7
|
Draft Genome Sequence of Jeotgalibacillus soli DSM 23228, a Bacterium Isolated from Alkaline Sandy Soil. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00512-15. [PMID: 25999554 PMCID: PMC4440968 DOI: 10.1128/genomea.00512-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Jeotgalibacillus soli, a bacterium capable of degrading N-acyl homoserine lactone, was isolated from a soil sample in Portugal. J. soli constitutes the only Jeotgalibacillus species isolated from a non-marine source. Here, the draft genome, several interesting glycosyl hydrolases, and its putative N-acyl homoserine lactonases are presented.
Collapse
|