1
|
Recent advances in enzyme inhibition based-electrochemical biosensors for pharmaceutical and environmental analysis. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
2
|
González-Hernández J, Ott CE, Arcos-Martínez MJ, Colina Á, Heras A, Alvarado-Gámez AL, Urcuyo R, Arroyo-Mora LE. Rapid Determination of the 'Legal Highs' 4-MMC and 4-MEC by Spectroelectrochemistry: Simultaneous Cyclic Voltammetry and In Situ Surface-Enhanced Raman Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2021; 22:295. [PMID: 35009837 PMCID: PMC8749763 DOI: 10.3390/s22010295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 11/18/2022]
Abstract
The synthetic cathinones mephedrone (4-MMC) and 4-methylethcathinone (4-MEC) are two designer drugs that represent the rise and fall effect of this drug category within the stimulants market and are still available in several countries around the world. As a result, the qualitative and quantitative determination of 'legal highs', and their mixtures, are of great interest. This work explores for the first time the spectroelectrochemical response of these substances by coupling cyclic voltammetry (CV) with Raman spectroscopy in a portable instrument. It was found that the stimulants exhibit a voltammetric response on a gold screen-printed electrode while the surface is simultaneously electro-activated to achieve a periodic surface-enhanced Raman spectroscopy (SERS) substrate with high reproducibility. The proposed method enables a rapid and reliable determination in which both substances can be selectively analyzed through the oxidation waves of the molecules and the characteristic bands of the electrochemical SERS (EC-SERS) spectra. The feasibility and applicability of the method were assessed in simulated seized drug samples and spiked synthetic urine. This time-resolved spectroelectrochemical technique provides a cost-effective and user-friendly tool for onsite screening of synthetic stimulants in matrices with low concentration analytes for forensic applications.
Collapse
Affiliation(s)
- Jerson González-Hernández
- Centro de Investigación en Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, San José 11501-2060, Costa Rica; (J.G.-H.); (A.L.A.-G.); (R.U.)
- Escuela de Química, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Colby Edward Ott
- Department of Forensic and Investigative Science, West Virginia University, Morgantown, WV 26506, USA;
| | - María Julia Arcos-Martínez
- Departamento de Química, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain; (M.J.A.-M.); (Á.C.); (A.H.)
| | - Álvaro Colina
- Departamento de Química, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain; (M.J.A.-M.); (Á.C.); (A.H.)
| | - Aránzazu Heras
- Departamento de Química, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain; (M.J.A.-M.); (Á.C.); (A.H.)
| | - Ana Lorena Alvarado-Gámez
- Centro de Investigación en Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, San José 11501-2060, Costa Rica; (J.G.-H.); (A.L.A.-G.); (R.U.)
| | - Roberto Urcuyo
- Centro de Investigación en Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, San José 11501-2060, Costa Rica; (J.G.-H.); (A.L.A.-G.); (R.U.)
- Escuela de Química, Universidad de Costa Rica, San José 11501-2060, Costa Rica
- Centro de Investigación en Ciencias e Ingeniería de Materiales (CICIMA), Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Luis E. Arroyo-Mora
- Department of Forensic and Investigative Science, West Virginia University, Morgantown, WV 26506, USA;
| |
Collapse
|
3
|
Smart A, Crew A, Pemberton R, Hughes G, Doran O, Hart J. Screen-printed carbon based biosensors and their applications in agri-food safety. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115898] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Adusumalli VKB, Runowski M, Lis S. 3,5-Dihydroxy Benzoic Acid-Capped CaF 2:Tb 3+ Nanocrystals as Luminescent Probes for the WO 4 2- Ion in Aqueous Solution. ACS OMEGA 2020; 5:4568-4575. [PMID: 32175503 PMCID: PMC7066553 DOI: 10.1021/acsomega.9b03956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
We report a facile and effective luminescence method for the determination of the WO4 2- ion in aqueous medium at initial pH = 6.3. This is achieved using 3,5-dihydroxybenzoic acid-capped CaF2:Tb3+ (5%) nanocrystals (NCs) as a luminescent probe. This is accomplished based on the energy transfer luminescence from the WO4 2- ion to the Tb3+ ion in small-size CaF2:Tb3+ NCs. Hydroxyl groups on the surface ligand helps in binding the tungstate ion to the surface of the NCs. With the gradual addition of the WO4 2- ion, the intensity of the Tb3+ excitation and emission spectra significantly increased. The linear range of the detection was from 1 to 10 μM for the WO4 2- ion (R 2 = 0.99). The calculated detection limit was 0.4 μM (by applying the 3σ/K criterion).
Collapse
Affiliation(s)
- Venkata
N. K. B. Adusumalli
- Department of Rare Earths, Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Marcin Runowski
- Department of Rare Earths, Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Stefan Lis
- Department of Rare Earths, Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| |
Collapse
|
5
|
Ganta D, Chavez J, Lopez A. Disposable Chronoamperometric Sensor Coated with Silver Nanowires for Detecting Levofloxacin. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1727494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Deepak Ganta
- School of Engineering, Texas A&M International University, Laredo, Texas, USA
| | - Jonathan Chavez
- School of Engineering, Texas A&M International University, Laredo, Texas, USA
| | - Aalejandro Lopez
- School of Engineering, Texas A&M International University, Laredo, Texas, USA
| |
Collapse
|
6
|
Fathy SA, Abdel Hamid FF, El Nemr A, El-Maghraby A, Serag E. Tyrosinase biosensor based on multiwall carbon nanotubes – titanium oxide nanocomposite for catechol determination. DESALINATION AND WATER TREATMENT 2018; 130:98-108. [DOI: 10.5004/dwt.2018.22847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
7
|
Zulkifli SN, Rahim HA, Lau WJ. Detection of contaminants in water supply: A review on state-of-the-art monitoring technologies and their applications. SENSORS AND ACTUATORS. B, CHEMICAL 2018; 255:2657-2689. [PMID: 32288249 PMCID: PMC7126548 DOI: 10.1016/j.snb.2017.09.078] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/22/2017] [Accepted: 09/13/2017] [Indexed: 05/12/2023]
Abstract
Water monitoring technologies are widely used for contaminants detection in wide variety of water ecology applications such as water treatment plant and water distribution system. A tremendous amount of research has been conducted over the past decades to develop robust and efficient techniques of contaminants detection with minimum operating cost and energy. Recent developments in spectroscopic techniques and biosensor approach have improved the detection sensitivities, quantitatively and qualitatively. The availability of in-situ measurements and multiple detection analyses has expanded the water monitoring applications in various advanced techniques including successful establishment in hand-held sensing devices which improves portability in real-time basis for the detection of contaminant, such as microorganisms, pesticides, heavy metal ions, inorganic and organic components. This paper intends to review the developments in water quality monitoring technologies for the detection of biological and chemical contaminants in accordance with instrumental limitations. Particularly, this review focuses on the most recently developed techniques for water contaminant detection applications. Several recommendations and prospective views on the developments in water quality assessments will also be included.
Collapse
Affiliation(s)
| | - Herlina Abdul Rahim
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Woei-Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
8
|
Otrelo-Cardoso AR, Nair RR, Correia MAS, Cordeiro RSC, Panjkovich A, Svergun DI, Santos-Silva T, Rivas MG. Highly selective tungstate transporter protein TupA from Desulfovibrio alaskensis G20. Sci Rep 2017; 7:5798. [PMID: 28724964 PMCID: PMC5517513 DOI: 10.1038/s41598-017-06133-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/25/2017] [Indexed: 12/22/2022] Open
Abstract
Molybdenum and tungsten are taken up by bacteria and archaea as their soluble oxyanions through high affinity transport systems belonging to the ATP-binding cassette (ABC) transporters. The component A (ModA/TupA) of these transporters is the first selection gate from which the cell differentiates between MoO42−, WO42− and other similar oxyanions. We report the biochemical characterization and the crystal structure of the apo-TupA from Desulfovibrio desulfuricans G20, at 1.4 Å resolution. Small Angle X-ray Scattering data suggests that the protein adopts a closed and more stable conformation upon ion binding. The role of the arginine 118 in the selectivity of the oxyanion was also investigated and three mutants were constructed: R118K, R118E and R118Q. Isothermal titration calorimetry clearly shows the relevance of this residue for metal discrimination and oxyanion binding. In this sense, the three variants lost the ability to coordinate molybdate and the R118K mutant keeps an extremely high affinity for tungstate. These results contribute to an understanding of the metal-protein interaction, making it a suitable candidate for a recognition element of a biosensor for tungsten detection.
Collapse
Affiliation(s)
- Ana Rita Otrelo-Cardoso
- UCIBIO/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Rashmi R Nair
- UCIBIO/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Márcia A S Correia
- UCIBIO/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Raquel S Correia Cordeiro
- UCIBIO/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.,Ruhr-Universität Bochum, Universitätsstraße, 150/44780, Bochum, Germany
| | - Alejandro Panjkovich
- European Molecular Biology Laboratory-Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory-Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Teresa Santos-Silva
- UCIBIO/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.
| | - Maria G Rivas
- Department of Physics, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina.
| |
Collapse
|
9
|
Trojanowicz M. Impact of nanotechnology on design of advanced screen-printed electrodes for different analytical applications. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.03.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Diba FS, Kim S, Lee HJ. Amperometric bioaffinity sensing platform for avian influenza virus proteins with aptamer modified gold nanoparticles on carbon chips. Biosens Bioelectron 2015; 72:355-61. [PMID: 26011543 DOI: 10.1016/j.bios.2015.05.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 12/20/2022]
Abstract
A sandwich assay platform involving a surface formed aptamer-protein-antibody complex was developed to obtain the highly selective and sensitive amperometric detection of H5N1 viral proteins using a gold nanoparticle (NP) modified electrode. This is the first aptamer-antibody pairing reported for the selective detection of H5N1. Nanoparticle deposited screen-printed carbon electrodes were first functionalized by the covalent immobilization of a DNA aptamer specific to H5N1 followed by the adsorption of H5N1 protein. Alkaline phosphatase (ALP) conjugated monoclonal antibody was then adsorbed to form a surface bound Au NPs-aptamer/H5N1/antiH5N1-ALP sandwich complex which was further reacted with the enzyme substrate, 4-amino phenyl phosphate (APP). The current associated with the electrocatalytic reaction of the surface bound ALP with APP increased as the H5N1 concentration increased. A lowest detectable concentration of 100 fM was obtained with a linear dynamic range of 100 fM to 10 pM using differential pulse voltammetry. As an example, the biosensor was applied to the detection of H5N1 protein in diluted human serum samples spiked with different concentrations of the viral protein target.
Collapse
Affiliation(s)
- Farhana Sharmin Diba
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city 702-701, Republic of Korea
| | - Suhee Kim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city 702-701, Republic of Korea
| | - Hye Jin Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city 702-701, Republic of Korea.
| |
Collapse
|