1
|
Damirchi Z, Firoozbakhtian A, Hosseini M, Ganjali MR. Ti 3C 2/Ni/Sm-based electrochemical glucose sensor for sweat analysis using bipolar electrochemistry. Mikrochim Acta 2024; 191:137. [PMID: 38358570 DOI: 10.1007/s00604-024-06209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
An innovative electrochemical sensor is introduced that utilizes bipolar electrochemistry on a paper substrate for detecting glucose in sweat. The sensor employs a three-dimensional porous nanocomposite (MXene/NiSm-LDH) formed by decorating nickel-samarium nanoparticles with double-layer MXene hydroxide. These specially designed electrodes exhibit exceptional electrocatalytic activity during glucose oxidation. The glucose sensing mechanism involves enzyme-free oxidation of the analyte within the sensor cell, achieved by applying an appropriate potential. This leads to the reduction of K3Fe(CN)6 in the reporter cell, and the resulting current serves as the response signal. By optimizing various parameters, the measurement platform enables the accurate determination of sweat glucose concentrations within a linear range of 10 to 200 µM. The limit of detection (LOD) for glucose is 3.6 µM (S/N = 3), indicating a sensitive and reliable detection capability. Real samples were analysed to validate the sensor's efficiency, and the results obtained were both promising and encouraging.
Collapse
Affiliation(s)
- Zahra Damirchi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1439817435, Iran
| | - Ali Firoozbakhtian
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 1439817435, Iran
| | - Morteza Hosseini
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 1439817435, Iran.
- Medical Genetics Department, Institute of Medical Biotechnology (IMB), National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1439817435, Iran.
| |
Collapse
|
2
|
Sasso A, Capaccio A, Rusciano G. Exploring Reliable and Efficient Plasmonic Nanopatterning for Surface- and Tip-Enhanced Raman Spectroscopies. Int J Mol Sci 2023; 24:16164. [PMID: 38003354 PMCID: PMC10671507 DOI: 10.3390/ijms242216164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Surface-enhanced Raman scattering (SERS) is of growing interest for a wide range of applications, especially for biomedical analysis, thanks to its sensitivity, specificity, and multiplexing capabilities. A crucial role for successful applications of SERS is played by the development of reproducible, efficient, and facile procedures for the fabrication of metal nanostructures (SERS substrates). Even more challenging is to extend the fabrication techniques of plasmonic nano-textures to atomic force microscope (AFM) probes to carry out tip-enhanced Raman spectroscopy (TERS) experiments, in which spatial resolution below the diffraction limit is added to the peculiarities of SERS. In this short review, we describe recent studies performed by our group during the last ten years in which novel nanofabrication techniques have been successfully applied to SERS and TERS experiments for studying bio-systems and molecular species of environmental interest.
Collapse
Affiliation(s)
- Antonio Sasso
- Department of Physics “E. Pancini”, University of Naples “Federico II”, 80126 Naples, Italy; (A.C.); (G.R.)
| | - Angela Capaccio
- Department of Physics “E. Pancini”, University of Naples “Federico II”, 80126 Naples, Italy; (A.C.); (G.R.)
- Institute of Food Sciences, URT-CNR Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy
| | - Giulia Rusciano
- Department of Physics “E. Pancini”, University of Naples “Federico II”, 80126 Naples, Italy; (A.C.); (G.R.)
| |
Collapse
|
3
|
Qin J, Jiang S, Wang Z, Cheng X, Li B, Shi Y, Tsai DP, Liu AQ, Huang W, Zhu W. Metasurface Micro/Nano-Optical Sensors: Principles and Applications. ACS NANO 2022; 16:11598-11618. [PMID: 35960685 DOI: 10.1021/acsnano.2c03310] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Metasurfaces are 2D artificial materials consisting of arrays of metamolecules, which are exquisitely designed to manipulate light in terms of amplitude, phase, and polarization state with spatial resolutions at the subwavelength scale. Traditional micro/nano-optical sensors (MNOSs) pursue high sensitivity through strongly localized optical fields based on diffractive and refractive optics, microcavities, and interferometers. Although detections of ultra-low concentrations of analytes have already been demonstrated, the label-free sensing and recognition of complex and unknown samples remain challenging, requiring multiple readouts from sensors, e.g., refractive index, absorption/emission spectrum, chirality, etc. Additionally, the reliability of detecting large, inhomogeneous biosamples may be compromised by the limited near-field sensing area from the localization of light. Here, we review recent advances in metasurface-based MNOSs and compare them with counterparts using micro-optics from aspects of physics, working principles, and applications. By virtue of underlying the physics and design flexibilities of metasurfaces, MNOSs have now been endowed with superb performances and advanced functionalities, leading toward highly integrated smart sensing platforms.
Collapse
Affiliation(s)
- Jin Qin
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shibin Jiang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhanshan Wang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Xinbin Cheng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong Tat Chee Avenue, Kowloon 999077, Hong Kong, China
| | - Ai Qun Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Wei Huang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences(CAS), Suzhou 215123, China
| | - Weiming Zhu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
4
|
D’yachkov PN, D’yachkov EP. Interaction of Chiral Gold Nanotubes with an Alternating Magnetic Field. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Chowdhury E, Rahaman MS, Sathitsuksanoh N, Grapperhaus CA, O'Toole MG. DNA-mediated hierarchical organization of gold nanoprisms into 3D aggregates and their application in surface-enhanced Raman scattering. Phys Chem Chem Phys 2021; 23:25256-25263. [PMID: 34734598 DOI: 10.1039/d1cp03684j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Colloidal crystallization using DNA provides a robust method for fabricating highly programmable nanoparticle superstructures with collective plasmonic properties. Here, we report on the DNA-guided fabrication of 3D plasmonic aggregates from polydisperse gold nanoprisms. We first construct 1D crystals via DNA-induced and shape-directed face-to-face assembly of anisotropic gold nanoprisms. Using the near-Tm thermal annealing approach that promotes long-range DNA-induced interaction and ordering, we then assemble 1D nanoprism crystals into a 3D nanoprism aggregate that exhibits a polycrystalline morphology with nanoscale ordering and microscale dimensions. The presence of closely packed nanoprism arrays over a large area gives rise to strong near-field plasmonic coupling and generates a high density of plasmonic hot spots within the 3D nanoprism aggregates that exhibit excellent surface-enhanced Raman scattering performance. The plasmonic 3D nanoprism aggregates demonstrate significant SERS enhancement (<106), and low detection limits (10-9M) with good sample-to-sample reproducibility (CV ∼ only 5.6%) for SERS analysis of the probe molecule, methylene blue. These findings highlight the potential of 3D anisotropic nanoparticle aggregates as functional plasmonic nanoarchitectures that could find applications in sensing, photonics, optoelectronics and lasing.
Collapse
Affiliation(s)
- Emtias Chowdhury
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA
| | | | - Noppadon Sathitsuksanoh
- Department of Chemical Engineering, University of Louisville, Louisville, Kentucky 40292, USA
| | - Craig A Grapperhaus
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA
| | - Martin G O'Toole
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA.
| |
Collapse
|
6
|
|
7
|
Mitrovic IZ, Almalki S, Tekin SB, Sedghi N, Chalker PR, Hall S. Oxides for Rectenna Technology. MATERIALS 2021; 14:ma14185218. [PMID: 34576441 PMCID: PMC8471330 DOI: 10.3390/ma14185218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
The quest to harvest untapped renewable infrared energy sources has led to significant research effort in design, fabrication and optimization of a self-biased rectenna that can operate without external bias voltage. At the heart of its design is the engineering of a high-frequency rectifier that can convert terahertz and infrared alternating current (AC) signals to usable direct current (DC). The Metal Insulator Metal (MIM) diode has been considered as one of the ideal candidates for the rectenna system. Its unparalleled ability to have a high response time is due to the fast, femtosecond tunneling process that governs current transport. This paper presents an overview of single, double and triple insulator MIM diodes that have been fabricated so far, in particular focusing on reviewing key figures of merit, such as zero-bias responsivity (β0), zero-bias dynamic resistance (R0) and asymmetry. The two major oxide contenders for MInM diodes have been NiO and Al2O3, in combination with HfO2, Ta2O5, Nb2O5, ZnO and TiO2. The latter oxide has also been used in combination with Co3O4 and TiOx. The most advanced rectennas based on MI2M diodes have shown that optimal (β0 and R0) can be achieved by carefully tailoring fabrication processes to control oxide stoichiometry and thicknesses to sub-nanometer accuracy.
Collapse
Affiliation(s)
- Ivona Z. Mitrovic
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK; (S.A.); (N.S.); (S.H.)
- Correspondence: (I.Z.M.); (S.B.T.); Tel.: +44-151-7944-540 (I.Z.M.)
| | - Saeed Almalki
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK; (S.A.); (N.S.); (S.H.)
| | - Serdar B. Tekin
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK; (S.A.); (N.S.); (S.H.)
- Correspondence: (I.Z.M.); (S.B.T.); Tel.: +44-151-7944-540 (I.Z.M.)
| | - Naser Sedghi
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK; (S.A.); (N.S.); (S.H.)
| | - Paul R. Chalker
- School of Engineering, University of Liverpool, Liverpool L69 3GH, UK;
| | - Stephen Hall
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK; (S.A.); (N.S.); (S.H.)
| |
Collapse
|
8
|
Hassan MH, Vyas C, Grieve B, Bartolo P. Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing. SENSORS (BASEL, SWITZERLAND) 2021; 21:4672. [PMID: 34300412 PMCID: PMC8309655 DOI: 10.3390/s21144672] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022]
Abstract
The detection of glucose is crucial in the management of diabetes and other medical conditions but also crucial in a wide range of industries such as food and beverages. The development of glucose sensors in the past century has allowed diabetic patients to effectively manage their disease and has saved lives. First-generation glucose sensors have considerable limitations in sensitivity and selectivity which has spurred the development of more advanced approaches for both the medical and industrial sectors. The wide range of application areas has resulted in a range of materials and fabrication techniques to produce novel glucose sensors that have higher sensitivity and selectivity, lower cost, and are simpler to use. A major focus has been on the development of enzymatic electrochemical sensors, typically using glucose oxidase. However, non-enzymatic approaches using direct electrochemistry of glucose on noble metals are now a viable approach in glucose biosensor design. This review discusses the mechanisms of electrochemical glucose sensing with a focus on the different generations of enzymatic-based sensors, their recent advances, and provides an overview of the next generation of non-enzymatic sensors. Advancements in manufacturing techniques and materials are key in propelling the field of glucose sensing, however, significant limitations remain which are highlighted in this review and requires addressing to obtain a more stable, sensitive, selective, cost efficient, and real-time glucose sensor.
Collapse
Affiliation(s)
- Mohamed H. Hassan
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (C.V.)
| | - Cian Vyas
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (C.V.)
| | - Bruce Grieve
- Department of Electrical & Electronic Engineering, University of Manchester, Manchester M13 9PL, UK;
| | - Paulo Bartolo
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (C.V.)
| |
Collapse
|
9
|
Point-of-Care Diagnostics: Molecularly Imprinted Polymers and Nanomaterials for Enhanced Biosensor Selectivity and Transduction. EUROBIOTECH JOURNAL 2020. [DOI: 10.2478/ebtj-2020-0023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Significant healthcare disparities resulting from personal wealth, circumstances of birth, education level, and more are internationally prevalent. As such, advances in biomedical science overwhelmingly benefit a minority of the global population. Point-of-Care Testing (POCT) can contribute to societal equilibrium by making medical diagnostics affordable, convenient, and fast. Unfortunately, conventional POCT appears stagnant in terms of achieving significant advances. This is attributed to the high cost and instability associated with conventional biorecognition: primarily antibodies, but nucleic acids, cells, enzymes, and aptamers have also been used. Instead, state-of-the-art biosensor researchers are increasingly leveraging molecularly imprinted polymers (MIPs) for their high selectivity, excellent stability, and amenability to a variety of physical and chemical manipulations. Besides the elimination of conventional bioreceptors, the incorporation of nanomaterials has further improved the sensitivity of biosensors. Herein, modern nanobiosensors employing MIPs for selectivity and nanomaterials for improved transduction are systematically reviewed. First, a brief synopsis of fabrication and wide-spread challenges with selectivity demonstration are presented. Afterward, the discussion turns to an analysis of relevant case studies published in the last five years. The analysis is given through two lenses: MIP-based biosensors employing specific nanomaterials and those adopting particular transduction strategies. Finally, conclusions are presented along with a look to the future through recommendations for advancing the field. It is hoped that this work will accelerate successful efforts in the field, orient new researchers, and contribute to equitable health care for all.
Collapse
|
10
|
Skigin DC, Lester M. Refraction index sensor based on phase resonances in a subwavelength structure with double period. APPLIED OPTICS 2016; 55:8131-8137. [PMID: 27828052 DOI: 10.1364/ao.55.008131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this paper, we numerically demonstrate a refraction index sensor based on phase resonance excitation in a subwavelength-slit structure with a double period. The sensor consists of a metal layer with subwavelength slots arranged in a bi-periodic form, separated from a high refraction index medium. Between the metallic structure and the incident medium, a dielectric waveguide is formed whose refraction index is going to be determined. Variations in the refraction index of the waveguide are detected as shifts in the peaks of transmitted intensity originated by resonant modes supported by the compound metallic structure. At normal incidence, the spectral position of these resonant peaks exhibits a linear or a quadratic dependence with the refraction index, which permits us to obtain the unknown refraction index value with a high precision for a wide range of wavelengths. Since the operating principle of the sensor is due to the morphological resonances of the slits' structure, this device can be scaled to operate in different wavelength ranges while keeping similar characteristics.
Collapse
|
11
|
Melendez JH, Santaus TM, Brinsley G, Kiang D, Mali B, Hardick J, Gaydos CA, Geddes CD. Microwave-accelerated method for ultra-rapid extraction of Neisseria gonorrhoeae DNA for downstream detection. Anal Biochem 2016; 510:33-40. [PMID: 27325503 DOI: 10.1016/j.ab.2016.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 02/03/2023]
Abstract
Nucleic acid-based detection of gonorrhea infections typically require a two-step process involving isolation of the nucleic acid, followed by detection of the genomic target often involving polymerase chain reaction (PCR)-based approaches. In an effort to improve on current detection approaches, we have developed a unique two-step microwave-accelerated approach for rapid extraction and detection of Neisseria gonorrhoeae (gonorrhea, GC) DNA. Our approach is based on the use of highly focused microwave radiation to rapidly lyse bacterial cells, release, and subsequently fragment microbial DNA. The DNA target is then detected by a process known as microwave-accelerated metal-enhanced fluorescence (MAMEF), an ultra-sensitive direct DNA detection analytical technique. In the current study, we show that highly focused microwaves at 2.45 GHz, using 12.3-mm gold film equilateral triangles, are able to rapidly lyse both bacteria cells and fragment DNA in a time- and microwave power-dependent manner. Detection of the extracted DNA can be performed by MAMEF, without the need for DNA amplification, in less than 10 min total time or by other PCR-based approaches. Collectively, the use of a microwave-accelerated method for the release and detection of DNA represents a significant step forward toward the development of a point-of-care (POC) platform for detection of gonorrhea infections.
Collapse
Affiliation(s)
- Johan H Melendez
- Institute of Fluorescence and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21202, USA
| | - Tonya M Santaus
- Institute of Fluorescence and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21202, USA
| | - Gregory Brinsley
- Institute of Fluorescence and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21202, USA
| | - Daniel Kiang
- Institute of Fluorescence and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21202, USA
| | - Buddha Mali
- Institute of Fluorescence and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21202, USA
| | - Justin Hardick
- The Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | | | - Chris D Geddes
- Institute of Fluorescence and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21202, USA.
| |
Collapse
|
12
|
Khmelinskii I, Zueva L, Inyushin M, Makarov V. Model of Polarization Selectivity of the Intermediate Filament Optical Channels. PHOTONICS AND NANOSTRUCTURES : FUNDAMENTALS AND APPLICATIONS 2015; 16:24-33. [PMID: 26435707 PMCID: PMC4587907 DOI: 10.1016/j.photonics.2015.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Recently we have analyzed light transmission and spectral selectivity by optical channels in Müller cells and other transparent cells, proposing a model of their structure, formed by specialized intermediate filaments [1,2]. Our model represents each optical channel by an axially symmetric tube with conductive walls. Presently, we analyze the planar polarization selectivity in long nanostructures, using the previously developed approach extended to structures of the elliptic cross-section. We find that the output light polarization angle depends on the a/b ratio, with a and b the semiaxes of the ellipse. Experimental tests used a Cr nano-strip device to evaluate the transmitted light polarization. The model adapted to the experimental geometry provided an accurate fit of the experimental results.
Collapse
Affiliation(s)
- Igor Khmelinskii
- Universidade do Algarve, FCT, DQB and CIQA, 8005-139, Faro, Portugal
| | - Lidia Zueva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Michael Inyushin
- Universidad Central del Caribe, School of Medicine, Bayamón, PR 00960-6032, USA
| | - Vladimir Makarov
- University of Puerto Rico, Rio Piedras Campus, PO Box 23343, San Juan, PR 00931-3343, USA
| |
Collapse
|