1
|
Chen YI, Chang YJ, Sun Y, Liao SC, Santacruz SR, Yeh HC. Spatial resolution enhancement in photon-starved STED imaging using deep learning-based fluorescence lifetime analysis. NANOSCALE 2023; 15:9449-9456. [PMID: 37159237 PMCID: PMC10460507 DOI: 10.1039/d3nr00305a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
As a super-resolution imaging method, stimulated emission depletion (STED) microscopy has unraveled fine intracellular structures and provided insights into nanoscale organizations in cells. Although image resolution can be further enhanced by continuously increasing the STED-beam power, the resulting photodamage and phototoxicity are major issues for real-world applications of STED microscopy. Here we demonstrate that, with 50% less STED-beam power, the STED image resolution can be improved up to 1.45-fold using the separation of photons by a lifetime tuning (SPLIT) scheme combined with a deep learning-based phasor analysis algorithm termed flimGANE (fluorescence lifetime imaging based on a generative adversarial network). This work offers a new approach for STED imaging in situations where only a limited photon budget is available.
Collapse
Affiliation(s)
- Yuan-I Chen
- Biomedical Engineering, University of Texas at Austin, Austin, TX, USA.
| | - Yin-Jui Chang
- Biomedical Engineering, University of Texas at Austin, Austin, TX, USA.
| | - Yuansheng Sun
- ISS, Inc., 1602 Newton Drive, Champaign, IL, 61822, USA
| | - Shih-Chu Liao
- ISS, Inc., 1602 Newton Drive, Champaign, IL, 61822, USA
| | - Samantha R Santacruz
- Biomedical Engineering, University of Texas at Austin, Austin, TX, USA.
- Electrical & Computer Engineering, University of Texas at Austin, Austin, TX, USA
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Hsin-Chih Yeh
- Biomedical Engineering, University of Texas at Austin, Austin, TX, USA.
- Texas Materials Institute, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
2
|
Aryal GM, Aryal B, Kandel KP, Neupane BB. Cellulose-based micro-fibrous materials imaged with a home-built smartphone microscope. Microsc Res Tech 2021; 84:1794-1801. [PMID: 33608938 DOI: 10.1002/jemt.23736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/21/2021] [Accepted: 02/01/2021] [Indexed: 12/29/2022]
Abstract
Micro-fibrous materials are one of the highly explored materials and form a major component of composite materials. In resource-limited settings, an affordable and easy to implement method that can characterize such material would be important. In this study, we report on a smartphone microscopic system capable of imaging a sample in transmission mode. As a proof of concept, we implemented the method to image handmade paper samples-cellulosic micro-fibrous material of different thickness. With 1 mm diameter ball lens, individual cellulose fibers, fiber web, and micro-porous regions were resolved in the samples. Imaging performance of the microscopic system was also compared with a commercial bright field microscope. For thin samples, we found the image quality comparable to commercial system. Also, the diameter of cellulose fiber measured from both methods was found to be similar. We also used the system to image surfaces of a three ply surgical facemask. Finally, we explored the application of the system in the study of chemical induced fiber damage. This study suggested that the smartphone microscope system can be an affordable alternative in imaging thin micro-fibrous material in resource limited setting.
Collapse
Affiliation(s)
- Girja Mani Aryal
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal.,Research Centre for Applied Science and Technology, Tribhuvan University, Kathmandu, Nepal
| | - Bishwa Aryal
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| | | | | |
Collapse
|
3
|
Lim G, Kim WC, Oh S, Lee H, Park NC. Enhanced lateral resolution in continuous wave stimulated emission depletion microscopy using tightly focused annular radially polarized excitation beam. JOURNAL OF BIOPHOTONICS 2019; 12:e201900060. [PMID: 31050861 DOI: 10.1002/jbio.201900060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
The lateral resolution of continuous wave (CW) stimulated emission depletion (STED) microscopy is enhanced about 12% by applying annular-shaped amplitude modulation to the radially polarized excitation beam. A focused annularly filtered radially polarized excitation beam provides a more condensed point spread function (PSF), which contributes to enhance effective STED resolution of CW STED microscopy. Theoretical analysis shows that the FWHM of the effective PSF on the detection plane is smaller than for conventional CW STED. Simulation shows the donut-shaped PSF of the depletion beam and confocal optics suppress undesired PSF sidelobes. Imaging experiments agree with the simulated resolution improvement.
Collapse
Affiliation(s)
- Geon Lim
- School of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Wan-Chin Kim
- Department of Smart Manufacturing Applied Engineering, Hanbat National University, Daejeon, Republic of Korea
| | - Seunghee Oh
- School of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
- Global Technology Center, Samsung Electronics, Suwon, Republic of Korea
| | - Hyungsuk Lee
- School of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - No-Cheol Park
- School of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Reshetniak S, Rizzoli SO. Interrogating Synaptic Architecture: Approaches for Labeling Organelles and Cytoskeleton Components. Front Synaptic Neurosci 2019; 11:23. [PMID: 31507402 PMCID: PMC6716447 DOI: 10.3389/fnsyn.2019.00023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/02/2019] [Indexed: 01/06/2023] Open
Abstract
Synaptic transmission has been studied for decades, as a fundamental step in brain function. The structure of the synapse, and its changes during activity, turned out to be key aspects not only in the transfer of information between neurons, but also in cognitive processes such as learning and memory. The overall synaptic morphology has traditionally been studied by electron microscopy, which enables the visualization of synaptic structure in great detail. The changes in the organization of easily identified structures, such as the presynaptic active zone, or the postsynaptic density, are optimally studied via electron microscopy. However, few reliable methods are available for labeling individual organelles or protein complexes in electron microscopy. For such targets one typically relies either on combination of electron and fluorescence microscopy, or on super-resolution fluorescence microscopy. This review focuses on approaches and techniques used to specifically reveal synaptic organelles and protein complexes, such as cytoskeletal assemblies. We place the strongest emphasis on methods detecting the targets of interest by affinity binding, and we discuss the advantages and limitations of each method.
Collapse
Affiliation(s)
- Sofiia Reshetniak
- Institute for Neuro- and Sensory Physiology, Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany
- International Max Planck Research School for Molecular Biology, Göttingen, Germany
| | - Silvio O. Rizzoli
- Institute for Neuro- and Sensory Physiology, Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Lee WS, Lim G, Kim WC, Choi GJ, Yi HW, Park NC. Investigation on improvement of lateral resolution of continuous wave STED microscopy by standing wave illumination. OPTICS EXPRESS 2018; 26:9901-9919. [PMID: 29715937 DOI: 10.1364/oe.26.009901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/24/2018] [Indexed: 06/08/2023]
Abstract
In this paper, we report the enhancement of resolution of continuous wave (CW) stimulated emission depletion (STED) microscopy by a novel method of structured illumination of an excitation beam. Illumination by multiple excitation beams through the specific pupil apertures with high in-plane wave vectors leads to interference of diffracted light flux near the focal plane, resulting in the contraction of the point spread function (PSF) of the excitation. Light spot reduction by the suggested standing wave (SW) illumination method contributes to make up much lower depletion efficiency of the CW STED microscopy than that of the pulsed STED method. First, theoretical analysis showed that the full width at half maximum (FWHM) of the effective PSF on the detection plane is expected to be smaller than 25% of that of conventional CW STED. Second, through the simulation, it was elucidated that both the donut-shaped PSF of the depletion beam and the confocal optics suppress undesired contribution of sidelobes of the PSF by the SW illumination to the effective PSF of the STED system. Finally, through the imaging experiment on 40-nm fluorescent beads with the developed SW-CW STED microscopy system, we obtained the result which follows the overall tendency from the simulation in the aspects of resolution improvement and reduction of sidelobes. Based on the obtained result, we expect that the proposed method can become one of the strategies to enhance the resolution of the CW STED microscopy.
Collapse
|
6
|
Komis G, Novák D, Ovečka M, Šamajová O, Šamaj J. Advances in Imaging Plant Cell Dynamics. PLANT PHYSIOLOGY 2018; 176:80-93. [PMID: 29167354 PMCID: PMC5761809 DOI: 10.1104/pp.17.00962] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/20/2017] [Indexed: 05/20/2023]
Abstract
Advanced bioimaging uncovers insights into subcellular structures of plants.
Collapse
Affiliation(s)
- George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic
| | - Dominik Novák
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic
| | - Miroslav Ovečka
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic
| | - Olga Šamajová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic
| |
Collapse
|
7
|
Janel S, Werkmeister E, Bongiovanni A, Lafont F, Barois N. CLAFEM: Correlative light atomic force electron microscopy. Methods Cell Biol 2017; 140:165-185. [PMID: 28528632 DOI: 10.1016/bs.mcb.2017.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Atomic force microscopy (AFM) is becoming increasingly used in the biology field. It can give highly accurate topography and biomechanical quantitative data, such as adhesion, elasticity, and viscosity, on living samples. Nowadays, correlative light electron microscopy is a must-have tool in the biology field that combines different microscopy techniques to spatially and temporally analyze the structure and function of a single sample. Here, we describe the combination of AFM with superresolution light microscopy and electron microscopy. We named this technique correlative light atomic force electron microscopy (CLAFEM) in which AFM can be used on fixed and living cells in association with superresolution light microscopy and further processed for transmission or scanning electron microscopy. We herein illustrate this approach to observe cellular bacterial infection and cytoskeleton. We show that CLAFEM brings complementary information at the cellular level, from on the one hand protein distribution and topography at the nanometer scale and on the other hand elasticity at the piconewton scales to fine ultrastructural details.
Collapse
Affiliation(s)
- Sébastien Janel
- Univ. Lille, CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Elisabeth Werkmeister
- Univ. Lille, CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Antonino Bongiovanni
- Univ. Lille, CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Frank Lafont
- Univ. Lille, CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Nicolas Barois
- Univ. Lille, CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
8
|
Cadete VJJ, Deschênes S, Cuillerier A, Brisebois F, Sugiura A, Vincent A, Turnbull D, Picard M, McBride HM, Burelle Y. Formation of mitochondrial-derived vesicles is an active and physiologically relevant mitochondrial quality control process in the cardiac system. J Physiol 2016; 594:5343-62. [PMID: 27311616 DOI: 10.1113/jp272703] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/13/2016] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Mitochondrial-derived vesicle (MDV) formation occurs under baseline conditions and is rapidly upregulated in response to stress-inducing conditions in H9c2 cardiac myoblasts. In mice formation of MDVs occurs readily in the heart under normal healthy conditions while mitophagy is comparatively less prevalent. In response to acute stress induced by doxorubicin, mitochondrial dysfunction develops in the heart, triggering MDV formation and mitophagy. MDV formation is thus active in the cardiac system, where it probably constitutes a baseline housekeeping mechanism and a first line of defence against stress. ABSTRACT The formation of mitochondrial-derived vesicles (MDVs), a process inherited from bacteria, has emerged as a potentially important mitochondrial quality control (QC) mechanism to selectively deliver damaged material to lysosomes for degradation. However, the existence of this mechanism in various cell types, and its physiological relevance, remains unknown. Our aim was to investigate the dynamics of MDV formation in the cardiac system in vitro and in vivo. Immunofluorescence in cell culture, quantitative transmission electron microscopy and electron tomography in vivo were used to study MDV production in the cardiac system. We show that in cardiac cells MDV production occurs at baseline, is commensurate with the dependence of cells on oxidative metabolism, is more frequent than mitophagy and is up-regulated on the time scale of minutes to hours in response to prototypical mitochondrial stressors (antimycin-A, xanthine/xanthine oxidase). We further show that MDV production is up-regulated together with mitophagy in response to doxorubicin-induced mitochondrial and cardiac dysfunction. Here we provide the first quantitative data demonstrating that MDV formation is a mitochondrial QC operating in the heart.
Collapse
Affiliation(s)
| | - Sonia Deschênes
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | | | | | - Ayumu Sugiura
- Neuromuscular Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Amy Vincent
- Welcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Doug Turnbull
- Welcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Department of Neurology and CTNI, Columbia University Medical Centre, New York, NY, USA
| | - Heidi M McBride
- Neuromuscular Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Yan Burelle
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|