1
|
Costella M, Avenas Q, Frénéa-Robin M, Marchalot J, Bevilacqua P, Charette PG, Canva M. Dielectrophoretic cell trapping for improved surface plasmon resonance imaging sensing. Electrophoresis 2019; 40:1417-1425. [PMID: 30830963 DOI: 10.1002/elps.201800439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 12/31/2022]
Abstract
The performance of conventional surface plasmon resonance (SPR) biosensors can be limited by the diffusion of the target analyte to the sensor surface. This work presents an SPR biosensor that incorporates an active mass-transport mechanism based on dielectrophoresis and electroosmotic flow to enhance analyte transport to the sensor surface and reduce the time required for detection. Both these phenomena rely on the generation of AC electric fields that can be tailored by shaping the electrodes that also serve as the SPR sensing areas. Numerical simulations of electric field distribution and microparticle trajectories were performed to choose an optimal electrode design. The proposed design improves on previous work combining SPR with DEP by using face-to-face electrodes, rather than a planar interdigitated design. Two different top-bottom electrode designs were experimentally tested to concentrate firstly latex beads and secondly biological cells onto the SPR sensing area. SPR measurements were then performed by varying the target concentrations. The electrohydrodynamic flow enabled efficient concentration of small objects (3 μm beads, yeasts) onto the SPR sensing area, which resulted in an order of magnitude increased SPR response. Negative dielectrophoresis was also used to concentrate HEK293 cells onto the metal electrodes surrounded by insulating areas, where the SPR response was improved by one order of magnitude.
Collapse
Affiliation(s)
- Marion Costella
- Université de Lyon, École Centrale de Lyon, Université Claude Bernard Lyon 1, INSA Lyon, CNRS, Ampère, Écully, France.,Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS UMI-3463, Université de Sherbrooke, École Centrale de Lyon, Sherbrooke, Canada
| | - Quentin Avenas
- Université de Lyon, École Centrale de Lyon, Université Claude Bernard Lyon 1, INSA Lyon, CNRS, Ampère, Écully, France.,Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS UMI-3463, Université de Sherbrooke, École Centrale de Lyon, Sherbrooke, Canada
| | - Marie Frénéa-Robin
- Université de Lyon, École Centrale de Lyon, Université Claude Bernard Lyon 1, INSA Lyon, CNRS, Ampère, Écully, France
| | - Julien Marchalot
- Université de Lyon, École Centrale de Lyon, Université Claude Bernard Lyon 1, INSA Lyon, CNRS, Ampère, Écully, France
| | - Pascal Bevilacqua
- Université de Lyon, École Centrale de Lyon, Université Claude Bernard Lyon 1, INSA Lyon, CNRS, Ampère, Écully, France
| | - Paul G Charette
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS UMI-3463, Université de Sherbrooke, École Centrale de Lyon, Sherbrooke, Canada.,Institut Interdisciplinaire d'Innovation Technologique (3IT) - Université de Sherbrooke- Sherbrooke, Canada
| | - Michael Canva
- Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS UMI-3463, Université de Sherbrooke, École Centrale de Lyon, Sherbrooke, Canada.,Institut Interdisciplinaire d'Innovation Technologique (3IT) - Université de Sherbrooke- Sherbrooke, Canada
| |
Collapse
|
2
|
Tai YH, Lee CW, Chang DM, Lai YS, Huang DW, Wei PK. Escherichia coli Fiber Sensors Using Concentrated Dielectrophoretic Force with Optical Defocusing Method. ACS Sens 2018; 3:1196-1202. [PMID: 29771118 DOI: 10.1021/acssensors.8b00258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A sensitive tapered optical fiber tip combined with dielectrophoretic (DEP) trapping was used for rapid and label-free detection of bacteria in water. The angular spectrum of the optical field at the fiber tip was changed with the surrounding refractive index (RI). By measuring far-field intensity change at the defocus plane, the intensity sensitivity was up to 95 200%/RIU (RI unit), and the detection limit was 5.2 × 10-6 RIU at 0.5% intensity stability. By applying an AC voltage to a Ti/Al coated fiber tip and an indium-tin-oxide glass, the DEP force effectively trapped the Escherichia coli ( E. coli) near the fiber tip. Those bacteria can be directly measured from optical intensity change due to the increase of surrounding RI. By immobilizing the antibody on the Ti/Al fiber tip, the tests for specific K12 bacteria and nonspecific BL21 bacteria verified the specificity. The antibody-immobilized Ti/Al coated fiber tip with DEP trapping can detect bacteria at a concentration about 100 CFU/mL.
Collapse
Affiliation(s)
- Yi-Hsin Tai
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Wei Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Dao-Ming Chang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Sheng Lai
- Department of Biochemistry and Molecular Biology, College of Medicine National Taiwan University, Taipei 10051, Taiwan
| | - Ding-Wei Huang
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Pei-Kuen Wei
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan
- Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|
3
|
Optical fiber tips for biological applications: From light confinement, biosensing to bioparticles manipulation. Biochim Biophys Acta Gen Subj 2018; 1862:1209-1246. [DOI: 10.1016/j.bbagen.2018.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/26/2018] [Accepted: 02/13/2018] [Indexed: 12/15/2022]
|
4
|
Almeida GB, Poppi RJ, da Silva JAF. Trapping of Au nanoparticles in a microfluidic device using dielectrophoresis for surface enhanced Raman spectroscopy. Analyst 2017; 142:375-379. [DOI: 10.1039/c6an01497f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we use DEP with insulating structures (iDEP) to generate a non-uniform electric field for trapping gold nanoparticles (AuNP). The system was coupled to a Raman spectrometer for the detection of Crystal Violet by utilizing the SERS effect.
Collapse
Affiliation(s)
- Gabriela B. Almeida
- Department of Analytical Chemistry – Chemistry Institute
- State University of Campinas
- Campinas
- Brazil
| | - Ronei J. Poppi
- Department of Analytical Chemistry – Chemistry Institute
- State University of Campinas
- Campinas
- Brazil
| | | |
Collapse
|