1
|
Park J, Seo B, Jeong Y, Park I. A Review of Recent Advancements in Sensor-Integrated Medical Tools. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307427. [PMID: 38460177 PMCID: PMC11132050 DOI: 10.1002/advs.202307427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/26/2023] [Indexed: 03/11/2024]
Abstract
A medical tool is a general instrument intended for use in the prevention, diagnosis, and treatment of diseases in humans or other animals. Nowadays, sensors are widely employed in medical tools to analyze or quantify disease-related parameters for the diagnosis and monitoring of patients' diseases. Recent explosive advancements in sensor technologies have extended the integration and application of sensors in medical tools by providing more versatile in vivo sensing capabilities. These unique sensing capabilities, especially for medical tools for surgery or medical treatment, are getting more attention owing to the rapid growth of minimally invasive surgery. In this review, recent advancements in sensor-integrated medical tools are presented, and their necessity, use, and examples are comprehensively introduced. Specifically, medical tools often utilized for medical surgery or treatment, for example, medical needles, catheters, robotic surgery, sutures, endoscopes, and tubes, are covered, and in-depth discussions about the working mechanism used for each sensor-integrated medical tool are provided.
Collapse
Affiliation(s)
- Jaeho Park
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141South Korea
| | - Bokyung Seo
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141South Korea
| | - Yongrok Jeong
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141South Korea
- Radioisotope Research DivisionKorea Atomic Energy Research Institute (KAERI)Daejeon34057South Korea
| | - Inkyu Park
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141South Korea
| |
Collapse
|
2
|
A High-Speed Demodulation Technology of Fiber Optic Extrinsic Fabry-Perot Interferometric Sensor Based on Coarse Spectrum. SENSORS 2021; 21:s21196609. [PMID: 34640929 PMCID: PMC8512430 DOI: 10.3390/s21196609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/18/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022]
Abstract
A fast real-time demodulation method based on the coarsely sampled spectrum is proposed for transient signals of fiber optic extrinsic Fabry-Perot interferometers (EFPI) sensors. The feasibility of phase demodulation using a coarse spectrum is theoretically analyzed. Based on the coarse spectrum, fast Fourier transform (FFT) algorithm is used to roughly estimate the cavity length. According to the rough estimation, the maximum likelihood estimation (MLE) algorithm is applied to calculate the cavity length accurately. The dense wavelength division multiplexer (DWDM) is used to split the broadband spectrum into the coarse spectrum, and the high-speed synchronous ADC collects the spectrum. The experimental results show that the system can achieve a real-time dynamic demodulation speed of 50 kHz, a static measurement root mean square error (RMSE) of 0.184 nm, and a maximum absolute and relative error distribution of 15 nm and 0.005% of the measurement cavity length compared with optical spectrum analyzers (OSA).
Collapse
|
3
|
Park J, Cha DI, Jeong Y, Park H, Lee J, Kang TW, Lim HK, Park I. Real-Time Internal Steam Pop Detection during Radiofrequency Ablation with a Radiofrequency Ablation Needle Integrated with a Temperature and Pressure Sensor: Preclinical and Clinical Pilot Tests. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100725. [PMID: 34351701 PMCID: PMC8498861 DOI: 10.1002/advs.202100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/29/2021] [Indexed: 06/13/2023]
Abstract
A radiofrequency ablation (RFA) needle integrated with a temperature sensor (T-sensor) and pressure sensor (P-sensor) is designed and utilized for real-time internal steam pop monitoring during RFA. The characteristics of the sensor-integrated RFA needle (sRFA-needle) are investigated quantitatively using a pressure chamber system, and the feasibility and usability of the needle in preclinical and clinical trials is demonstrated. The sharp changes in the temperature and normalized pressure sensor signals induced by the abrupt release of hot and high-pressure steam can be clearly monitored during the steam pop phenomena. The basic mechanism of the preliminary steam pop is hypothesized and verified using in situ ultrasound imaging data and computational analysis data of the RFA procedure. Moreover, the usability of the system in clinical trials is investigated, and the steam pop phenomena during the RFA procedure are detected using T-sensor and P-sensor. The results confirm that the sensor integration on the medical needle can provide critical data for safer and more effective medical practices.
Collapse
Affiliation(s)
- Jaeho Park
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141South Korea
- Present address:
Department of Chemical EngineeringStanford UniversityStanfordCA94305United States
| | - Dong Ik Cha
- Radiology and Center for Imaging ScienceSamsung Medical CenterSungkyunkwan University School of MedicineSeoul06351South Korea
| | - Yongrok Jeong
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141South Korea
| | - Hayan Park
- Radiology and Center for Imaging ScienceSamsung Medical CenterSungkyunkwan University School of MedicineSeoul06351South Korea
| | - Jinwoo Lee
- RF Medical Co. Ltd.Seoul08511South Korea
| | - Tae Wook Kang
- Radiology and Center for Imaging ScienceSamsung Medical CenterSungkyunkwan University School of MedicineSeoul06351South Korea
| | - Hyo Keun Lim
- Radiology and Center for Imaging ScienceSamsung Medical CenterSungkyunkwan University School of MedicineSeoul06351South Korea
- Department of Health Sciences and TechnologySamsung Advanced Institute for Health Sciences & Technology (SAIHST)Sungkyunkwan University School of MedicineSeoul06355South Korea
| | - Inkyu Park
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141South Korea
| |
Collapse
|
4
|
De Vita E, De Landro M, Massaroni C, Iadicicco A, Saccomandi P, Schena E, Campopiano S. Fiber Optic Sensors-Based Thermal Analysis of Perfusion-Mediated Tissue Cooling in Liver Undergoing Laser Ablation. IEEE Trans Biomed Eng 2021; 68:1066-1073. [PMID: 32746040 DOI: 10.1109/tbme.2020.3004983] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The current challenge in the field of thermo-ablative treatments of tumors is to achieve a balance between complete destruction of malignant cells and safeguarding of the surrounding healthy tissue. Blood perfusion plays a key role for thermal ablation success, especially in the case of highly vascularized organs like liver. This work aims at monitoring the temperature within perfused swine liver undergoing laser ablation (LA). Temperature was measured through seven arrays of Fiber Bragg Grating sensors (FBGs) around the laser applicator. To mimic reality, blood perfusion within the ex-vivo liver was simulated using artificial vessels. The influence of blood perfusion on LA was carried out by comparing the temperature profiles in two different spatial configurations of vessels and fibers. The proposed setup permitted to accurately measure the heat propagation in real-time with a temperature resolution of 0.1 °C and to observe a relevant tissue cooling near to the vessel up to 65%.
Collapse
|
5
|
Wei G, Jiang Q. Force sensitivity and fringe contrast characteristics of spheroidal Fabry-Perot interferometers. OPTICS EXPRESS 2020; 28:24586-24598. [PMID: 32906998 DOI: 10.1364/oe.398596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Force/strain sensitivity and fringe contrast are important parameters of spheroidal Fabry-Perot interferometers (FPIs). A static structural model and a ray optics model are proposed in this paper for analyses of force/strain sensitivity and fringe contrast. The models proposed show that the sensitivity and fringe contrast of FPIs with spheroidal cavities can be controlled through the dimensions of the spheroids. To corroborate the analyses, three spheroidal FPIs are fabricated via a chemical etching method and static force experiments are carried out. The maximum relative errors of force sensitivity and fringe contrast are 5.2% and -6.4%, respectively. We believe that this research will contribute to improvements in the performance of spheroidal FPIs.
Collapse
|
6
|
Iacoponi S, Massaroni C, Lo Presti D, Saccomandi P, Caponero MA, DrAmato R, Schena E. Polymer-coated fiber optic probe for the monitoring of breathing pattern and respiratory rate. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:1616-1619. [PMID: 30440702 DOI: 10.1109/embc.2018.8512566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In recent years, no-invasive and small size systems are meeting the demand of the new healthcare system, in which the vital signs monitoring is gaining in importance. In this context, Fiber Bragg grating (FBG) sensors are becoming very popular and FBG-based systems could be used for monitoring vital signs. At the same time, FBG could be able to sense chemical parameters by the polymer functionalization. The aim of our study was investigating the ability of a polymer-coated FBG-based probe for monitoring breathing patterns and respiratory rates. We tested the proposed FBG-based probe on 9 healthy volunteers during spirometry, the most common pulmonary function test. Results showed the high accuracy of the proposed probe to detect respiratory rate. The comparison between the respiratory rates estimated by the probe with the ones by the spirometer showed the absolute value of the percentage errors lower than 2.07% (in the 78% of cases <.91%). Lastly, a Bland Altman analysis was performed to compare the instantaneous respiratory rate values gathered by the spirometer and the FBG probe showing the feasibility of breath-by-breath monitoring by the proposed probe. Results showed a bias of 0.06± 2.90 $\mathrm{breaths}\square {\mathrm {min}}^{-1}$. Additionally, our system was able to follow the breathing activities and monitoring the breathing patterns.
Collapse
|
7
|
Ma T, Chai YC, Zhu HY, Chen H, Wang Y, Li QS, Pang LH, Wu RQ, Lv Y, Dong DH. Effects of Different 980-nm Diode Laser Parameters in Hepatectomy. Lasers Surg Med 2019; 51:720-726. [PMID: 31090100 DOI: 10.1002/lsm.23101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2019] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND OBJECTIVE Despite the successful application of laser in animal experiments and clinics, the adjustment of laser parameters during surgery is still unclear. This study aimed to investigate the effect of different 980-nm diode laser parameters in hepatectomy. This could provide a clear protocol for using 980-nm diode laser in hepatectomy. STUDY DESIGN/MATERIALS AND METHODS In total, 48 Sprague-Dawley rats were used to explore the effects of different 980-nm diode laser parameters in hepatectomy, by setting different parameter combinations. The rats were randomly divided into eight groups, including the continuous wave group and quasi-continuous wave group. The effects were assessed in terms of liver resection speed, extent of intraoperative bleeding, and thermal damage. RESULTS In the quasi-continuous wave group, there was a significant difference in resection speed at the different laser parameters (P < 0.001); however, there was no significant difference in intraoperative bleeding and thermal damage. In the continuous wave group, there was a significant difference in resection speed, intraoperative bleeding, and thermal damage at different parameters. CONCLUSION The study showed that the average power determined hemostasis efficiency and thermal damage, and peak power determined the liver resection speed, whereas the pulse width and repetition frequency are not independent factors. When using 980-nm diode laser in hepatectomy, the average power should be decreased to prove hemostasis efficiency in delicate operations, and the peak power should be decreased to accelerate the procedure without worsening thermal damage. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tao Ma
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yi-Chao Chai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Surgical Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hao-Yang Zhu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Huan Chen
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yue Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qing-Shan Li
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li-Hui Pang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Rong-Qian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ding-Hui Dong
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
8
|
Saccomandi P, Schena E, Caponero MA, Gassino R, Hernandez J, Perrone G, Vallan A, Diana M, Costamagna G, Marescaux J. Novel carbon fiber probe for temperature monitoring during thermal therapies. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:873-876. [PMID: 29060011 DOI: 10.1109/embc.2017.8036963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Thermal treatments are a valid clinical option in the management of several solid tumors. The difficulties to perform an accurate prediction improve the selectivity of the treatment effects represent the main hurdles in the spread of these techniques. Among other solutions, thermometric techniques are gaining acceptance in monitoring the effects of thermal treatments because they provide a clear end-point to obtain the complete removal of cancer without damaging the surrounding healthy tissue. This paper proposes a custom needle-like probe made of carbon fibers to embed seven fiber Bragg grating (FBG) sensors. This tool aims at a multiple points monitoring the tissue temperature during the thermal procedures, streamlining the FBG sensors insertion within the organ. After the description of the probe manufacturing, we reported the calibration of the seven sensors embedded within the probe, their step response, and the feasibility assessment of the probe for temperature monitoring during laser ablation on animal model (both in vivo and ex vivo). Results show that the proposed probe is easily maneuverable by the clinician, the sensors have a linear response with the temperature and a short step response; moreover, the probe allows measuring the temperature in seven points of the tissue; finally, it can be used during CTand MR-guided procedures without causing any artifact to the images. Thanks to these features the probe may be an useful solution to improve the safety and the outcomes of minimally invasive thermal ablation procedures, so to spread these procedures in the clinical field.
Collapse
|
9
|
Plantar Pressure Detection with Fiber Bragg Gratings Sensing System. SENSORS 2016; 16:s16101766. [PMID: 27782089 PMCID: PMC5087550 DOI: 10.3390/s16101766] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 12/04/2022]
Abstract
In this paper, a novel fiber-optic sensing system based on fiber Bragg gratings (FBGs) to measure foot plantar pressure is proposed. This study first explores the Pedar-X insole foot pressure types of the adult-size chart and then defines six measurement areas to effectively identify four foot types: neutral foot, cavus foot, supinated foot and flat foot. The plantar pressure signals are detected by only six FBGs, which are embedded in silicone rubber. The performance of the fiber optic sensing is examined and compared with a digital pressure plate of i-Step P1000 with 1024 barometric sensors. In the experiment, there are 11 participants with different foot types to participate in the test. The Pearson correlation coefficient, which is determined from the measured results of the homemade fiber-optic plantar pressure system and i-Step P1000 plantar pressure plate, reaches up to 0.671 (p < 0.01). According to the measured results from the plantar pressure data, the proposed fiber optic sensing system can successfully identify the four different foot types. Measurements of this study have demonstrated the feasibility of the proposed system so that it can be an alternative for plantar pressure detection systems.
Collapse
|
10
|
Napoleoni F, Caponera M, Polimadei A, Tosi D, Saccomandi P, Schena E. Monitoring of thermal treatment by linearly chirped fiber Bragg grating sensors: feasibility assessment during laser ablation on ex vivo liver. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:6493-6496. [PMID: 28269734 DOI: 10.1109/embc.2016.7592216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this work a spatially-resolved fiber optic temperature sensor has been characterized in a wide range of gradient applied on its active area (from -35 °C to +35 °C). Preliminary experiments to assess its feasibility for application in laser ablation have been performed. The sensor under test is a linearly chirped fiber Bragg grating (FBG), with 1.5 cm-length of active area. It can be considered as a chain of several FBGs, each able to sense local temperature. The sensor response to the gradient has been analyzed in terms of its spectrum width (full width at half maximum). There is a linear relationship between the full width at half maximum and the gradient, with a sensitivity of 0.0087 nm°C-1. The feasibility test using the linearly chirped FBG during laser ablation showed promising results: it is able to detect both the thermal gradients along is active area and the average temperature increment during the procedure.
Collapse
|
11
|
Saccomandi P, Frauenfelder G, Massaroni C, Caponera MA, Polimadei A, Taffoni F, Di Matteo FM, Costamagna G, Giurazza F, Schena E. Temperature monitoring during radiofrequency ablation of liver: in vivo trials. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:344-347. [PMID: 28268347 DOI: 10.1109/embc.2016.7590710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Radiofrequency ablation (RFA) is a minimally invasive procedure used to treat tumors by means of hyperthermia, mostly through percutaneous approach. The tissue temperature plays a pivotal role in the achievement of the target volume heating, while sparing the surrounding healthy tissue from thermal damage. Several techniques for thermometry during RFA are investigated, most of them based on the use of single-point measurement system (e.g., thermocouples). The measurement of temperature map is crucial for the real-time control and fine adjustment of the treatment settings, to optimize the shape and size of the ablated volume. The recent interest about fiber optic sensors and, among them, fiber Bragg gratings (FBGs) for the monitoring of thermal effects motivated further investigation. In particular, the feature of FBGs to form an array of several elements, thus to be inscribed within the same fiber, allows the use of a single probe for the multi-points monitoring of the tissue temperature during RFA. Hence, the aim of this study is the development and characterization of a needle-like probe embedding an array of three FBGs, which was tested on pig liver during in vivo trials. The needle allows a safe and easy insertion of the fiber optic within the liver. It was inserted by ultrasound guidance into the liver, and monitored the change of tissue temperature during RFA controlled by the roll-off technique. Also the measurement error induced by breathing movements of the liver was assessed (less than 3 °C). Results encourage the use of the probe in clinical settings, as well as the improvement of some features, e.g., a higher number of FBGs for performing quasi-distributed measurement.
Collapse
|
12
|
Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview. SENSORS 2016; 16:s16071144. [PMID: 27455273 PMCID: PMC4970186 DOI: 10.3390/s16071144] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 01/05/2023]
Abstract
During recent decades, minimally invasive thermal treatments (i.e., Radiofrequency ablation, Laser ablation, Microwave ablation, High Intensity Focused Ultrasound ablation, and Cryo-ablation) have gained widespread recognition in the field of tumor removal. These techniques induce a localized temperature increase or decrease to remove the tumor while the surrounding healthy tissue remains intact. An accurate measurement of tissue temperature may be particularly beneficial to improve treatment outcomes, because it can be used as a clear end-point to achieve complete tumor ablation and minimize recurrence. Among the several thermometric techniques used in this field, fiber optic sensors (FOSs) have several attractive features: high flexibility and small size of both sensor and cabling, allowing insertion of FOSs within deep-seated tissue; metrological characteristics, such as accuracy (better than 1 °C), sensitivity (e.g., 10 pm·°C−1 for Fiber Bragg Gratings), and frequency response (hundreds of kHz), are adequate for this application; immunity to electromagnetic interference allows the use of FOSs during Magnetic Resonance- or Computed Tomography-guided thermal procedures. In this review the current status of the most used FOSs for temperature monitoring during thermal procedure (e.g., fiber Bragg Grating sensors; fluoroptic sensors) is presented, with emphasis placed on their working principles and metrological characteristics. The essential physics of the common ablation techniques are included to explain the advantages of using FOSs during these procedures.
Collapse
|