1
|
Zhang Y, Wang H, Lu M, Li G, Bai M, Yang W, Tan W, Li G. A dual-modality sensing probe of fluorescent and colorimetric for detection of cobalt ion based on silver nanoparticles functionalized rhodamine 6G derivatives. CHEMOSPHERE 2024; 362:142790. [PMID: 38971435 DOI: 10.1016/j.chemosphere.2024.142790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/23/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
The combination of fluorescent probe and colorimetric technique has become one of the most powerful analytical methods due to the advantages of visualization, minimal measurement errors and high sensitivity. Hence, a novel dual-modality sensing probe with both colorimetric and fluorescent capabilities was developed for detecting cobalt ions (Co2+) based on homocysteine mediated silver nanoparticles and rhodamine 6G derivatives probe (AgNPs-Hcy-Rh6G2). The fluorescence of the AgNPs-Hcy-Rh6G2 probe turned on due to the opening of the Rh6G2 spirolactam ring in the presence of Co2+ by a catalytic hydrolysis. The fluorescent intensity of probe is proportional to Co2+ concentration in the range of 0.10-50 μM with a detection limit of 0.05 μM (S/N = 3). More fascinatingly, the color of AgNPs-Hcy-Rh6G2 probe changed from colorless to pink with increasing Co2+ concentration, which allowing colorimetric determination of Co2+. The absorbance of AgNPs-Hcy-Rh6G2 probe is proportional to Co2+ concentration in the range from 0.10 to 25 μM with a detection limit of 0.04 μM (S/N = 3). This colorimetric and fluorescent dual-modal method exhibited good selectivity, and reproducibility and stability, holding great potential for real samples analysis in environmental and drug field.
Collapse
Affiliation(s)
- Yao Zhang
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming, 650500, PR China
| | - Hongbin Wang
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming, 650500, PR China
| | - Mingrong Lu
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming, 650500, PR China
| | - Gufeng Li
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming, 650500, PR China
| | - Mei Bai
- The Ecological and Environmental Monitoring Station of DEEY, Wenshan, 663099, PR China
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3217, Australia
| | - Wei Tan
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming, 650500, PR China.
| | - Guizhen Li
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming, 650500, PR China.
| |
Collapse
|
2
|
Fringu I, Anghel D, Fratilescu I, Epuran C, Birdeanu M, Fagadar-Cosma E. Nanomaterials Based on 2,7,12,17-Tetra-tert-butyl-5,10,15,20-tetraaza-21H,23H-porphine Exhibiting Bifunctional Sensitivity for Monitoring Chloramphenicol and Co 2. Biomedicines 2024; 12:770. [PMID: 38672126 PMCID: PMC11047853 DOI: 10.3390/biomedicines12040770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
Monitoring antibiotic retention in human body fluids after treatment and controlling heavy metal content in water are important requirements for a healthy society. Therefore, the approach proposed in this study is based on developing new optical sensors using porphyrin or its bifunctional hybrid materials made with AuNPs to accomplish the accurate detection of chloramphenicol and cobalt. To produce the new optical chloramphenicol sensors, 2,7,12,17-tetra-tert-butyl-5,10,15,20-tetraaza-21H,23H-porphine (TBAP) was used, both alone in an acid medium and as a hybrid material with AuNPs in a water-DMSO acidified environment. The same hybrid material in the unchanged water-DMSO medium was the sensing material used for Co2+ monitoring. The best results of the hybrid materials were explained by the synergistic effects between the TBAP azaporphyrin and AuNPs. Chloramphenicol was accurately detected in the range of concentrations between 3.58 × 10-6 M and 3.37 × 10-5 M, and the same hybrid material quantified Co2+ in the concentration range of 8.92 × 10-5 M-1.77 × 10-4 M. In addition, we proved that AuNPs can be used for the detection of azaporphyrin (from 2.66 × 10-5 M to 3.29 × 10-4 M), making them a useful tool to monitor porphyrin retention after cancer imaging procedures or in porphyria disease. In conclusion, we harnessed the multifunctionality of this azaporphyrin and of its newly obtained AuNP plasmonic hybrids to detect chloramphenicol and Co2+ quickly, simply, and with high precision.
Collapse
Affiliation(s)
- Ionela Fringu
- Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Avenue 24, 300223 Timisoara, Romania; (I.F.); (D.A.); (I.F.); (C.E.)
| | - Diana Anghel
- Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Avenue 24, 300223 Timisoara, Romania; (I.F.); (D.A.); (I.F.); (C.E.)
| | - Ion Fratilescu
- Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Avenue 24, 300223 Timisoara, Romania; (I.F.); (D.A.); (I.F.); (C.E.)
| | - Camelia Epuran
- Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Avenue 24, 300223 Timisoara, Romania; (I.F.); (D.A.); (I.F.); (C.E.)
| | - Mihaela Birdeanu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, P. Andronescu Street, No. 1, 300224 Timisoara, Romania;
| | - Eugenia Fagadar-Cosma
- Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Avenue 24, 300223 Timisoara, Romania; (I.F.); (D.A.); (I.F.); (C.E.)
| |
Collapse
|
3
|
Shahbaz M, Dar B, Sharif S, Khurshid MA, Hussain S, Riaz B, Musaffa M, Khalid H, Ch AR, Mahboob A. Recent advances in the fluorimetric and colorimetric detection of cobalt ions. RSC Adv 2024; 14:9819-9847. [PMID: 38528922 PMCID: PMC10961957 DOI: 10.1039/d4ra00445k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/08/2024] [Indexed: 03/27/2024] Open
Abstract
Cobalt is an essential metal to maintain several functions in the human body and is present in functional materials for numerous applications. Thus, to monitor these functions, it is necessary to develop suitable probes for the detection of cobalt. Presently, researchers are focused on designing different chemosensors for the qualitative and quantitative detection of the metal ions. Among the numerous methods devised for the identification of cobalt ions, colorimetric and fluorimetric techniques are considered the best choice due to their user-friendly nature, sensitivity, accuracy, linearity and robustness. In these techniques, the interaction of the analyte with the chemosensor leads to structural changes in the molecule, causing the emission and excitation intensities (bathochromic, hyperchromic, hypochromic, and hypsochromic) to change with a change in the concentration of the analyte. In this review, the recent advancements in the fluorimetric and colorimetric detection of cobalt ions are systematically summarized, and it is concluded that the development of chemosensors having distinctive colour changes when interacting with cobalt ions has been targeted for on-site detection. The chemosensors are grouped in various categories and their comparison and the discussion of computational studies will enable readers to have a quick overview and help in designing effective and efficient probes for the detection of cobalt in the field of chemo-sensing.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore 5400-Pakistan
| | - Birra Dar
- Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore 5400-Pakistan
| | - Shahzad Sharif
- Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore 5400-Pakistan
| | - Muhammad Aqib Khurshid
- Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore 5400-Pakistan
| | - Sajjad Hussain
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj Univeristy Lahore Pakistan
| | - Bilal Riaz
- Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore 5400-Pakistan
| | - Maryam Musaffa
- Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore 5400-Pakistan
| | - Hania Khalid
- Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore 5400-Pakistan
| | - Ayoub Rashid Ch
- Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore 5400-Pakistan
| | - Abia Mahboob
- Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore 5400-Pakistan
| |
Collapse
|
4
|
Divya D, Thennarasu S. Rotational Isomerization about C−C Single Bond in a Novel ICT Probe Facilitates Naked‐Eye, Colorimetric and Ratiometric Detection of Cobalt in Aqueous Samples**. ChemistrySelect 2021. [DOI: 10.1002/slct.202101089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dhakshinamurthy Divya
- Organic and Bioorganic Chemistry Laboratory CSIR-Central Leather Research Institute, Adyar Chennai 600020 India
| | - Sathiah Thennarasu
- Organic and Bioorganic Chemistry Laboratory CSIR-Central Leather Research Institute, Adyar Chennai 600020 India
| |
Collapse
|
5
|
Brunelle E, Eldridge M, Halámek J. Determination of Time since Deposition of Fingerprints via Colorimetric Assays. ACS OMEGA 2021; 6:12898-12903. [PMID: 34056441 PMCID: PMC8154226 DOI: 10.1021/acsomega.1c01344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/26/2021] [Indexed: 05/16/2023]
Abstract
Past investigations involving fingerprints have revolved heavily around the image of the fingerprint-including the minutiae, scarring, and other distinguishing features-to visually find a match to its originator. Recently, it has been proven that the biochemical composition can be used to determine originator attributes, such as sex, via chemical and enzymatic cascades. While this provides pertinent information about the originator's identity, it is not the only piece of information that can be provided. This research was designed with three goals in mind: (1) identify how long it would take before an aged female fingerprint could no longer be differentiated from a male fingerprint, (2) identify a correlation between the data collected and a specific time since deposition (TSD) time point, and (3) identify if a specific amino acid could be contributing to the decreasing response seen for the aging fingerprints. Using ultraviolet-visible (UV-vis) spectroscopy, aged fingerprints were evaluated over the course of 12 weeks via three chemical assays previously used for fingerprint analysis-the ninhydrin assay, the Bradford assay, and the Sakaguchi assay. As fingerprints age, the conditions they are exposed to cause the biochemical composition to decompose. As this occurs, there is less available to be detected by analytical means. This results in a less intense color production and, thus, a lower measured absorbance. The results displayed here afforded the ability to conclude that all three goals set forth for this research were accomplished-a female fingerprint can be differentiated from a male fingerprint for at least 12 weeks, UV-vis data collected from aged fingerprints can be correlated to a TSD range but not necessarily a specific time point, and the decomposition of at least a single amino acid can afford the ability to estimate the TSD of the fingerprint.
Collapse
|
6
|
Color Changes in Ag Nanoparticle Aggregates Placed in Various Environments: Their Application to Air Monitoring. NANOMATERIALS 2021; 11:nano11030701. [PMID: 33799548 PMCID: PMC8001565 DOI: 10.3390/nano11030701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 01/27/2023]
Abstract
Fresh Ag nanoparticles (NPs) dispersed on a transparent SiO2 exhibit an intense optical extinction band originating in localized surface plasmon resonance (LSPR) in the visible range. The intensity of the LSPR band weakened when the Ag NPs was stored in ambient air for two weeks. The rate of the weakening and the LSPR wavelength shift, corresponding to visual chromatic changes, strongly depended on the environment in which Ag NPs were set. The origin of a chromatic change was discussed along with both compositional and morphological changes. In one case, bluish coloring followed by a prompt discoloring was observed for Ag NPs placed near the ventilation fan in our laboratory, resulted from adsorption of large amounts of S and Cl on Ag NP surfaces as well as particle coarsening. Such color changes deduce the presence of significant amounts of S and Cl in the environment. In another case, a remarkable blue-shift of the LSPR band was observed for the Ag NPs stored in the desiccator made of stainless steel, originated in the formation of CN and/or HCN compounds and surface roughening. Their color changed from maroon to reddish, suggesting that such molecules were present inside the desiccator.
Collapse
|
7
|
Fabrication of target specific solid-state optical sensors using chromoionophoric probe-integrated porous monolithic polymer and silica templates for cobalt ions. Anal Bioanal Chem 2021; 413:3177-3191. [PMID: 33677651 DOI: 10.1007/s00216-021-03255-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
The article demonstrates the design of two solid-state sensors for the capturing of industrially relevant ultra-trace Co(II) ions using porous monolithic silica and polymer templates. The mesoporous silica reveals high surface area and voluminous pore dimensions that ensures homogeneous anchoring of 4-((5-(allylthio)-1,3,4-thiadiazol-2-yl)diazenyl)benzene-1,3-diol, as the chromoionophore. We report a first of its kind solid-state macro-/meso-porous polymer monolithic optical sensor from a monomeric chromoionophore, i.e., 2-(4-butylphenyl)diazenyl)-2-hydroxybenzylidene)hydrazine-1-carbothioamide. The monolithic solid-state sensors are characterized using HR-TEM-SAED, FE-SEM-EDAX, p-XRD, XPS, 29Si/13C CPMAS NMR, FT-IR, TGA, and BET/BJH analysis. The electron microscopic images reveal a highly ordered hexagonal mesoporous network of honeycomb pattern for silica monolith, and a long-range macroporous framework with mesoporous channels for polymer monolith. The sensors offer exclusive ion-selectivity and sensitivity for trace cobalt ions, through a concentration proportionate visual color transition, with a response kinetics of ≤ 5 min. The optimization of ion-sensing performance reveals an excellent detection limit of 0.29 and 0.15 ppb for Co(II), using silica- and polymer-based monolithic sensors, respectively. The proposed sensors are tested with industrial wastewater and spent Li-ion batteries, which reveals a superior cobalt ion capturing efficiency of ≥ 99.2% (RSD: ≤ 2.07%).
Collapse
|
8
|
Gaber M, Fayed TA, El‐Nahass MN, Diab H, El‐Gamil MM. Synthesis, spectroscopic characterization and biological evaluation of a novel chemosensor with different metal ions. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- M. Gaber
- Department of Chemistry, Faculty of ScienceTanta University 31527 Tanta Egypt
| | - Tarek A. Fayed
- Department of Chemistry, Faculty of ScienceTanta University 31527 Tanta Egypt
| | - Marwa N. El‐Nahass
- Department of Chemistry, Faculty of ScienceTanta University 31527 Tanta Egypt
| | - H.A. Diab
- Department of Chemistry, Faculty of ScienceTanta University 31527 Tanta Egypt
| | - Mohammed M. El‐Gamil
- Department of Toxic and Narcotic Drug, Forensic Medicine, Mansoura Laboratory, Medico Legal OrganizationMinistry of Justice Egypt
| |
Collapse
|
9
|
Green and microwave-assisted synthesis of carbon dots and application for visual detection of cobalt(II) ions and pH sensing. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Kim H, Seo Y, Youn Y, Lee H, Yang M, Kim C. Determination of Fe2+
and Co2+
by a Multiple-Target Colorimetric Chemosensor with Low Detection Limit in Aqueous Solution. ChemistrySelect 2019. [DOI: 10.1002/slct.201803415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hyunjun Kim
- Nowon Institute of Education for The Gifted at Seoultech; Seoul National Univ. of Sci. and Tech.; Seoul 01810 South Korea
| | - Yujin Seo
- Nowon Institute of Education for The Gifted at Seoultech; Seoul National Univ. of Sci. and Tech.; Seoul 01810 South Korea
| | - Yeojin Youn
- Nowon Institute of Education for The Gifted at Seoultech; Seoul National Univ. of Sci. and Tech.; Seoul 01810 South Korea
| | - Hakyung Lee
- Nowon Institute of Education for The Gifted at Seoultech; Seoul National Univ. of Sci. and Tech.; Seoul 01810 South Korea
| | - Minuk Yang
- Department of Fine Chem.; Seoul National Univ. of Sci. and Tech.; Seoul 01810 South Korea
| | - Cheal Kim
- Nowon Institute of Education for The Gifted at Seoultech; Seoul National Univ. of Sci. and Tech.; Seoul 01810 South Korea
- Department of Fine Chem.; Seoul National Univ. of Sci. and Tech.; Seoul 01810 South Korea
| |
Collapse
|
11
|
|
12
|
|
13
|
Spiropyran-Isoquinoline Dyad as a Dual Chemosensor for Co(II) and In(III) Detection. Molecules 2017; 22:molecules22091569. [PMID: 28925958 PMCID: PMC6151406 DOI: 10.3390/molecules22091569] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/10/2017] [Indexed: 11/22/2022] Open
Abstract
Spiropyran derivatives have been studied as light-regulated chemosensors for a variety of metal cations and anions, but there is little research on chemosensors that simultaneously detect multiple metal cations. In this study, a spiropyran derivative with isoquinoline, SP-IQ, was prepared and it functions investigated as a light-regulated sensor for both Co2+ and In3+ cations. A colorless nonfluorescent SP-IQ converts to a pink-colored fluorescent MC-IQ by UV irradiation or standing in the dark, and MC-IQ returns to SP-IQ with visible light. Upon UV irradiation with the Co2+ cation for 7 min, the stronger absorption at 540 nm and the similar fluorescence intensity at 640 nm are observed, compared to when no metal cation is added, due to the formation of a Co2+ complex with pink color and pink fluorescence. When placed in the dark with the In3+ cation for 7 h, the colorless solution of SP-IQ changes to the In3+ complex with yellow color and pink fluorescence, which shows strong absorption at 410 nm and strong fluorescence at 640 nm. Selective detection of the Co2+ cation with UV irradiation and the In3+ cation in the dark could be possible with SP-IQ by both absorption and fluorescence spectroscopy or by the naked eye.
Collapse
|
14
|
Kang SM, Jang SC, Haldorai Y, Vilian ATE, Rethinasabapathy M, Roh C, Han YK, Huh YS. Facile fabrication of paper-based analytical devices for rapid and highly selective colorimetric detection of cesium in environmental samples. RSC Adv 2017. [DOI: 10.1039/c7ra08444g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cesium (Cs), a radioactive contaminant of the ecosystem, causes a major risk to human health and environments. This chemo-indicator is designed to exhibit a powerful detection capability featuring high selectivity and sensitivity to inactive Cs.
Collapse
Affiliation(s)
- Sung-Min Kang
- Department of Biological Engineering
- Biohybrid Systems Research Center (BSRC)
- Inha University
- Incheon
- Republic of Korea
| | - Sung-Chan Jang
- Department of Biological Engineering
- Biohybrid Systems Research Center (BSRC)
- Inha University
- Incheon
- Republic of Korea
| | - Yuvaraj Haldorai
- Department of Energy and Materials Engineering
- Dongguk University-Seoul
- Seoul
- Republic of Korea
| | - A. T. Ezhil Vilian
- Department of Energy and Materials Engineering
- Dongguk University-Seoul
- Seoul
- Republic of Korea
| | | | - Changhyun Roh
- Biotechnology Research Division
- Advanced Radiation Technology Institute (ARTI)
- Korea Atomic Energy Research Institute (KAERI)
- Jeongeup
- Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering
- Dongguk University-Seoul
- Seoul
- Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering
- Biohybrid Systems Research Center (BSRC)
- Inha University
- Incheon
- Republic of Korea
| |
Collapse
|