1
|
Kayani KF, Ghafoor D, Mohammed SJ, Shatery OBA. Carbon dots: synthesis, sensing mechanisms, and potential applications as promising materials for glucose sensors. NANOSCALE ADVANCES 2024; 7:42-59. [PMID: 39583130 PMCID: PMC11583430 DOI: 10.1039/d4na00763h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024]
Abstract
The disruption of glucose (Glu) metabolism in the human body can lead to conditions such as diabetes and hyperglycemia. Therefore, accurately determining Glu levels is crucial for clinical diagnosis and other applications. Carbon dots (CDs) are a novel category of carbon nanomaterials that exhibit outstanding optical properties, excellent biocompatibility, high water solubility, low production costs, and straightforward synthesis. Recently, researchers have developed various carbon dot sensors for fast and real-time Glu monitoring. In this context, we provide a comprehensive introduction to Glu and CDs for the first time. We categorize the synthetic methods for CDs and the sensing mechanisms, further classifying the applications of carbon dot probes into single-probe sensing, ratiometric sensing, and visual detection. Finally, we discuss the future development needs for CD-based Glu sensors. This review aims to offer insights into advancing Glu sensors and modern medical treatments.
Collapse
Affiliation(s)
- Kawan F Kayani
- Department of Chemistry, College of Science, Charmo University Peshawa Street, Chamchamal Sulaimani City 46023 Iraq
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St Sulaimani City Kurdistan Region 46002 Iraq
| | - Dlzar Ghafoor
- College of Science, Department of Medical Laboratory Sciences, Komar University of Science and Technology Sulaymaniyah 46001 Iraq
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St Sulaimani City Kurdistan Region 46002 Iraq
| | - Sewara J Mohammed
- Department of Anesthesia, College of Health Sciences, Cihan University Sulaimaniya Sulaymaniyah City Kurdistan Iraq
- Research and Development Center, University of Sulaimani, Kurdistan Regional Government Qlyasan Street Sulaymaniyah 46001 Iraq
| | - Omer B A Shatery
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St Sulaimani City Kurdistan Region 46002 Iraq
| |
Collapse
|
2
|
Rafiq K, Sadia I, Abid MZ, Waleed MZ, Rauf A, Hussain E. Scientific Insights into the Quantum Dots (QDs)-Based Electrochemical Sensors for State-of-the-Art Applications. ACS Biomater Sci Eng 2024; 10:7268-7313. [PMID: 39499739 DOI: 10.1021/acsbiomaterials.4c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Size-dependent optical and electronic properties are unique characteristics of quantum dots (QDs). A significant advantage is the quantum confinement effect that allows their precise tuning to achieve required characteristics and behavior for the targeted applications. Regarding the aforementioned factors, QDs-based sensors have exhibited dramatic potential for the diverse and advanced applications. For example, QDs-based devices have been potentially utilized for bioimaging, drug delivery, cancer therapy, and environmental remediation. In recent years, use of QDs-based electrochemical sensors have been further extended in other areas like gas sensing, metal ion detection, monitoring of organic pollutants, and detection of radioactive isotopes. Objective of this study is to rationalize the QDs-based electrochemical sensors for state-of-the-art applications. This review article comprehensively illustrates the importance of aforementioned devices along with sources from which QDs devices have been formulated and fabricated. Other distinct features of QDs devices are associated with their extremely high active surfaces, inherent ability of reproducibility, sensitivity, and selectivity for the targeted analyte detection. In this review, major categories of QD materials along with justification of their key roles in electrochemical devices have been demonstrated and discussed. All categories have been evaluated with special emphasis on the advantages and drawbacks/challenges associated with QD materials. However, in the interests of readers and researchers, recent improvements also have been included and discussed. On the evaluation, it has been concluded that despite significant challenges, QDs-based electrochemical sensors exhibit excellent performances for state-of-the-art and targeted applications.
Collapse
Affiliation(s)
- Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Iqra Sadia
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zaryab Waleed
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Abdul Rauf
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
3
|
Jia M, Yi B, Chen X, Xu Y, Xu X, Wu Z, Ji J, Tang J, Yu D, Zheng Y, Zhou Q, Zhao Y. Carbon dots induce pathological damage to the intestine via causing intestinal flora dysbiosis and intestinal inflammation. J Nanobiotechnology 2023; 21:167. [PMID: 37231475 PMCID: PMC10210306 DOI: 10.1186/s12951-023-01931-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Carbon dots (CDs), as excellent antibacterial nanomaterials, have gained great attention in treating infection-induced diseases such as periodontitis and stomatitis. Given the eventual exposure of CDs to the intestine, elucidating the effect of CDs on intestinal health is required for the safety evaluation of CDs. RESULTS Herein, CDs extracted from ε-poly-L-lysine (PL) were chosen to explore the modulation effect of CDs on probiotic behavior in vitro and intestinal remodeling in vivo. Results verify that PL-CDs negatively regulate Lactobacillus rhamnosus (L. rhamnosus) growth via increasing reactive oxygen species (ROS) production and reducing the antioxidant activity, which subsequently destroys membrane permeability and integrity. PL-CDs are also inclined to inhibit cell viability and accelerate cell apoptosis. In vivo, the gavage of PL-CDs is verified to induce inflammatory infiltration and barrier damage in mice. Moreover, PL-CDs are found to increase the Firmicutes to Bacteroidota (F/B) ratio and the relative abundance of Lachnospiraceae while decreasing that of Muribaculaceae. CONCLUSION Overall, these evidences indicate that PL-CDs may inevitably result in intestinal flora dysbiosis via inhibiting probiotic growth and simultaneously activating intestinal inflammation, thus causing pathological damage to the intestine, which provides an effective and insightful reference for the potential risk of CDs from the perspective of intestinal remodeling.
Collapse
Affiliation(s)
- Mengmeng Jia
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Bingcheng Yi
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071 China
| | - Xian Chen
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Yongzhi Xu
- School of Stomatology, Qingdao University, Qingdao, 266003 China
| | - Xinkai Xu
- School of Stomatology, Qingdao University, Qingdao, 266003 China
| | - Zhaoxu Wu
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Jing Ji
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Jinglong Tang
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Qihui Zhou
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071 China
- School of Stomatology, Qingdao University, Qingdao, 266003 China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000 Zhejiang China
| | - Yanjie Zhao
- School of Public Health, Qingdao University, Qingdao, 266071 China
| |
Collapse
|
4
|
A simple preparation of N-doped reduced graphene oxide as an electrode material for the detection of hydrogen peroxide and glucose. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
5
|
Ahmad MA, Aung YY, Widati AA, Sakti SCW, Sumarsih S, Irzaman I, Yuliarto B, Chang JY, Fahmi MZ. A Perspective on Using Organic Molecules Composing Carbon Dots for Cancer Treatment. Nanotheranostics 2023; 7:187-201. [PMID: 36793348 PMCID: PMC9925355 DOI: 10.7150/ntno.80076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/26/2022] [Indexed: 02/15/2023] Open
Abstract
Fluorescent Carbon dots (CDs) derived from biologically active sources have shown enhanced activities compared to their precursors. With their prominent potentiality, these small-sized (<10nm) nanomaterials could be easily synthesized from organic sources either by bottom-up or green approach. Their sources could influence the functional groups present on the CDs surfaces. A crude source of organic molecules has been used to develop fluorescent CDs. In addition, pure organic molecules were also valuable in developing practical CDs. Physiologically responsive interaction of CDs with various cellular receptors is possible due to the robust functionalization on their surface. In this review, we studied various literatures from the past ten years that reported the potential application of carbon dots as alternatives in cancer chemotherapy. The selective cytotoxic nature of some of the CDs towards cancer cell lines suggests the role of surface functional groups towards selective interaction, which results in over-expressed proteins characteristic of cancer cell lines. It could be inferred that cheaply sourced CDs could selectively bind to overexpressed proteins in cancer cells with the ultimate effect of cell death induced by apoptosis. In most cases, CDs-induced apoptosis directly or indirectly follows the mitochondrial pathway. Therefore, these nanosized CDs could serve as alternatives to the current kinds of cancer treatments that are expensive and have numerous side effects.
Collapse
Affiliation(s)
- Musbahu Adam Ahmad
- Department of Chemistry Universitas Airlangga, Surabaya 60115, Indonesia
| | - Yu-Yu Aung
- Department of Chemistry Universitas Airlangga, Surabaya 60115, Indonesia
| | - Alfa Akustia Widati
- Department of Chemistry Universitas Airlangga, Surabaya 60115, Indonesia.,Supramodification Nano-micro Engineering (SPANENG) research group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Satya Candra Wibawa Sakti
- Department of Chemistry Universitas Airlangga, Surabaya 60115, Indonesia.,Supramodification Nano-micro Engineering (SPANENG) research group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Sri Sumarsih
- Department of Chemistry Universitas Airlangga, Surabaya 60115, Indonesia
| | - Irzaman Irzaman
- Department of Physics, Bogor Agricultural University of Indonesia, Bogor16680, Indonesia
| | - Brian Yuliarto
- Advanced Functional Materials Laboratory, Department of Engineering Physics, Institut Teknologi Bandung, Bandung40132, Indonesia
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan, ROC
| | - Mochamad Zakki Fahmi
- Department of Chemistry Universitas Airlangga, Surabaya 60115, Indonesia.,Supramodification Nano-micro Engineering (SPANENG) research group, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
6
|
Cheraghi S, Shalali F, Taher MA. Kojic acid exploring as an essential food additive in real sample by a nanostructure sensor amplified with ionic liquid. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Electrochemical sensing performance of nitrogen rich zero- and two-dimensional carbon nanomaterials modified electrodes towards purines catabolism. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Rani P, Ahmed B, Singh J, Kaur J, Rawat M, Kaur N, Matharu AS, AlKahtani M, Alhomaidi EA, Lee J. Silver nanostructures prepared via novel green approach as an effective platform for biological and environmental applications. Saudi J Biol Sci 2022; 29:103296. [PMID: 35574283 PMCID: PMC9092993 DOI: 10.1016/j.sjbs.2022.103296] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/14/2022] [Accepted: 04/17/2022] [Indexed: 02/07/2023] Open
Abstract
Silver nanoparticles play a significant role in biomedical sciences due to their unique properties allowing for their use as an effective sensing and remediation platform Herein, the green synthesis of silver nanostructures (Ag NSs), prepared via aqueous extract of waste Brassica oleracea leaves in the presence of silver nitrate solution (10-4 M), is reported. The Ag NSs are fully characterized and their efficacy with respect to 4-nitrophenol reduction, glucose sensing, and microbes is determined. Visually, the color of silver nitrate containing solution altered from colorless to yellowish, then reddish grey, confirming the formation of Ag NSs. HRTEM and SEAD studies revealed the Ag NSs to have different morphologies (triangular, rod-shaped, hexagonal, etc., within a size range of 20-40 nm) with face-centered cubic (fcc) crystal structure. The Ag NSs possess high efficacy for nitrophenol reduction (<11 min and degradation efficiency of 98.2%), glucose sensing (LOD: 5.83 µM), and antimicrobial activity (E. coli and B. subtilis with clearance zones of 18.3 and 14 mm, respectively). Thus, the current study alludes towards the development of a cost-effective, sustainable, and efficient three-in-one platform for biomedical and environmental applications.
Collapse
Affiliation(s)
- Pooja Rani
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Republic of Korea
| | - Jagpreet Singh
- Department of Chemical Engineering, Chandigarh University, Gharuan, Mohali 140413, India
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India
| | - Jasmeen Kaur
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Mohit Rawat
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Navjot Kaur
- Rayat Institute of Pharmacy, Railmajra, SBS Nagar, Punjab 144533, India
| | - Avtar Singh Matharu
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Muneera AlKahtani
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Eman A.H. Alhomaidi
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Republic of Korea
| |
Collapse
|
9
|
Naik VM, Bhosale SV, Kolekar GB. A brief review on the synthesis, characterisation and analytical applications of nitrogen doped carbon dots. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:877-891. [PMID: 35174374 DOI: 10.1039/d1ay02105b] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Since their discovery in 2004, fluorescent carbon nanoparticles have been tremendously studied due to their tunable optical properties. Recent studies on the synthesis and application of doped carbon dots highlight the effortless doping strategy with high quantum yields and applications in diverse fields. Among these, nitrogen doped carbon dots (NCDs) have been extensively investigated for their potential analytical and biological applications. This review features the synthetic methods and important characterisation studies required to verify successful synthesis of nitrogen doped carbon dots. Analytical applications of NCDs in metal ion, biomolecule, temperature, pH and gas sensing along with cell imaging and drug delivery applications are also discussed.
Collapse
Affiliation(s)
- Vaibhav M Naik
- P. E. S's. Ravi S. Naik College of Arts and Science, Farmagudi, Ponda, Goa, India
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur-416004, Maharashtra, India.
| | - Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa 403206, India.
| | - Govind B Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur-416004, Maharashtra, India.
| |
Collapse
|
10
|
Yusuf VF, Atulbhai SV, Bhattu S, Malek NI, Kailasa SK. Recent developments on carbon dots-based green analytical methods: New opportunities in fluorescence assay of pesticides, drugs and biomolecules. NEW J CHEM 2022. [DOI: 10.1039/d2nj01401g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent carbon dots (CDs) grabs huge attention in analytical and bioanalytical applications due to their high selectivity towards target analyte, specificity, photostability, and quantum yield. Cost-effective and biocompatible properties of...
Collapse
|
11
|
Zhou C, Wu S, Qi S, Song W, Sun C. Facile and High-yield Synthesis of N-doped Carbon Quantum Dots from Biomass Quinoa Saponin for the Detection of Co 2. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:9732364. [PMID: 34976427 PMCID: PMC8718314 DOI: 10.1155/2021/9732364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Hydrothermal synthesis of carbon quantum dots (CQDs) from natural biomass is a green and sustainable route for CQDs applications in various fields. In this work, the preparation and characterization of CQDs based on quinoa saponin were investigated. The optimum synthetic conditions determined by orthogonal experiments were as follows: 2 g quinoa saponin powder and 0.04 mol ethylenediamine reacted at 200°C for 10 h. The relative fluorescence quantum yield (QY = 22.2%) can be obtained, which is higher than some results reported in the literatures. The prepared CQDs had a small and uniform size (∼2.25 nm) and exhibited excitation wavelength-dependent blue light emission behavior. The CQDs displayed excellent sensitivity for Co2+ detection along with good linear correlation ranging from 20 to 150 µM and the detection limit of 0.49 µM. The CQDs prepared in this experiment were successfully implanted into soybean sprouts for fluorescence imaging. The sprouts could grow healthily even soaked in the CQDs solution for two weeks, demonstrating the low toxicity of the CQDs. The advantages of the CQDs, such as low cost, ease of manufacture, nontoxicity, and stability, have potential applications in many areas such as metal ion detection and biosensing.
Collapse
Affiliation(s)
- Cuo Zhou
- School of Chemical Engineering, Qinghai University, Xining 810016, China
| | - Shunwei Wu
- School of Chemical Engineering, Qinghai University, Xining 810016, China
| | - Shenghui Qi
- School of Chemical Engineering, Qinghai University, Xining 810016, China
| | - Weijun Song
- School of Chemical Engineering, Qinghai University, Xining 810016, China
| | - Chunyan Sun
- School of Chemical Engineering, Qinghai University, Xining 810016, China
| |
Collapse
|
12
|
Pareek S, Rout V, Jain U, Bharadwaj M, Chauhan N. Nitrogen-Doped Carbon Dots for Selective and Rapid Gene Detection of Human Papillomavirus Causing Cervical Cancer. ACS OMEGA 2021; 6:31037-31045. [PMID: 34841146 PMCID: PMC8613818 DOI: 10.1021/acsomega.1c03919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
According to WHO, cervical cancer is considered as one of the most frequently diagnosed cancers and the fourth main source of cancer death in women in 2020 worldwide. Hence, there is a need for development of cervical cancer screening with new rapid and cost-effective methods. Although there are few methods available for HPV identification, these techniques are less sensitive, time-consuming, and costly. An ultra-sensitive, selective, and label-free DNA-based impedimetric electrochemical genosensor is developed in this study to detect HPV-18 for cervical cancer. Electrochemical analysis was performed for the characterization of the sensing platform and for the detection of analyte. A single-stranded 25mer oligonucleotide DNA probe was immobilized onto a nitrogen-doped carbon nanodot-modified ITO electrode. Furthermore, the hybridization event was measured by testing the complementary single stranded DNA sequence in the samples. The sensor could distinguish between complementary as well as non-complementary sequences. Herein, impedance quantification demonstrated a limit of detection of 0.405 fM. The developed genosensor showed high selectivity toward HPV-18 in the clinical samples. This sensing platform can be considered as a rapid and selective method for the screening of HPV-18.
Collapse
Affiliation(s)
- Sakshi Pareek
- Amity
Institute of Nanotechnology, Amity University
Uttar Pradesh, Noida 201313, India
| | - Vishwadeep Rout
- Amity
Institute of Biotechnology, Amity University
Uttar Pradesh, Noida 201313, India
| | - Utkarsh Jain
- Amity
Institute of Nanotechnology, Amity University
Uttar Pradesh, Noida 201313, India
| | - Mausumi Bharadwaj
- National
Institute of Cancer Prevention and Research, Indian Council of Medical Research (ICMR), Noida 201301, India
| | - Nidhi Chauhan
- Amity
Institute of Nanotechnology, Amity University
Uttar Pradesh, Noida 201313, India
| |
Collapse
|
13
|
Sri S, Lakshmi GBVS, Gulati P, Chauhan D, Thakkar A, Solanki PR. Simple and facile carbon dots based electrochemical biosensor for TNF-α targeting in cancer patient's sample. Anal Chim Acta 2021; 1182:338909. [PMID: 34602194 DOI: 10.1016/j.aca.2021.338909] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 01/05/2023]
Abstract
Tumour Necrosis Factor (TNF-α) is a pro-inflammatory cytokine having key roles in cell death, differentiation, survival, proliferation, migration and is a modulator of immune system. Therefore, TNF-α is an ideal biomarker for several disease diagnosis including cancer. However, out of all the biomarkers of cancer, TNF-α) is less explored for cancer detection. Only a few reports are available of developing biosensors for TNF-α targeting in human serum samples. Also, Carbon Dots (CDs) remains less explored in biosensor application. In this regard, for the first time, a sensitive and low-cost electrochemical biosensor based on CDs has developed. CDs were synthesized by simple yet facile microwave pyrolysis. Poly methyl methacrylate (PMMA) was selected as the matrix to hold CDs to fabricate the biosensing platform. This novel CD-PMMA nanocomposite featuring excellent biocompatibility, exceptional electrocatalytic conductivity, and large surface area. CD-PMMA was applied as transducing material to efficiently conjugate antibodies specific towards TNF-α and fabricate electrochemical immunosensor for specific detection of TNF-α. The fabricated immunosensor was used for the detection of TNF-α within a wide dynamic range of 0.05-160 pg mL-1 with a lower detection limit of 0.05 pg mL-1 and sensitivity of 5.56 pg mL-1 cm-2. Furthermore, this CDs based immunosensor retains high sensitivity, selectivity, and stability. This immunosensor demonstrated a high correlation with the conventional technique, Enzyme-Linked Immunosorbent Assay for early screening of cancer patient serum samples.
Collapse
Affiliation(s)
- Smriti Sri
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - G B V S Lakshmi
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Payal Gulati
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Deepika Chauhan
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Alok Thakkar
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
14
|
Maruthapandi M, Saravanan A, Das P, Luong JHT, Gedanken A. Microbial inhibition and biosensing with multifunctional carbon dots: Progress and perspectives. Biotechnol Adv 2021; 53:107843. [PMID: 34624454 DOI: 10.1016/j.biotechadv.2021.107843] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 12/25/2022]
Abstract
Carbon dots (CDs) and their doped counterparts including nitrogen-doped CDs (N@CDs) have been synthesized by bottom-up or top-down approaches from different precursors. The attractiveness of such emerging 2D‑carbon-based nanosized materials is attributed to their excellent biocompatibility, preparation, aqueous dispersibility, and functionality. The antimicrobial, optical, and electrochemical properties of CDs have been advocated for two important biotechnological applications: bacterial eradication and sensing/biosensing. CDs as well as N@CDs act as antimicrobial agents as their surfaces encompass functional hydroxyl, carboxyl, and amino groups that generate free radicals. As a new class of photoluminescent nanomaterials, CDs can be employed in diversified analytics. CDs with surface carboxyl or amino groups form nanocomposites with nanomaterials or be conjugated with biorecognition molecules toward the development of sensors/biosensors. The deployment of conductive CDs in electrochemical sensing has also increased significantly because of their quantum size, excellent biocompatibility, enzyme-mimicking activity, and high surface area. The review also addresses the ongoing challenges and promises of CDs in pathogenesis and analytics. Perspectives on the future possibilities include the use of CDs in microbial viability assay, wound healing, antiviral therapy, and medical devices.
Collapse
Affiliation(s)
- Moorthy Maruthapandi
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Arumugam Saravanan
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Poushali Das
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - John H T Luong
- School of Chemistry, University College Cork, Cork T12 YN60, Ireland
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
15
|
Hassanvand Z, Jalali F, Nazari M, Parnianchi F, Santoro C. Carbon Nanodots in Electrochemical Sensors and Biosensors: A Review. ChemElectroChem 2020. [DOI: 10.1002/celc.202001229] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Maryam Nazari
- Faculty of Chemistry Razi University Kermanshah Iran
| | | | - Carlo Santoro
- Department of Chemical Engineering and Analytical Science The University of Manchester The Mill Sackville Street Manchester M13PAL UK
| |
Collapse
|
16
|
Alaghmandfard A, Sedighi O, Tabatabaei Rezaei N, Abedini AA, Malek Khachatourian A, Toprak MS, Seifalian A. Recent advances in the modification of carbon-based quantum dots for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111756. [PMID: 33545897 DOI: 10.1016/j.msec.2020.111756] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
Carbon-based quantum dots (CDs) are mainly divided into two sub-groups; carbon quantum dots (CQDs) and graphene quantum dots (GQDs), which exhibit outstanding photoluminescence (PL) properties, low toxicity, superior biocompatibility and facile functionalization. Regarding these features, they have been promising candidates for biomedical science and engineering applications. In this work, we reviewed the efforts made to modify these zero-dimensional nano-materials to obtain the best properties for bio-imaging, drug and gene delivery, cancer therapy, and bio-sensor applications. Five main surface modification techniques with outstanding results are investigated, including doping, surface functionalization, polymer capping, nano-composite and core-shell structures, and the drawbacks and challenges in each of these methods are discussed.
Collapse
Affiliation(s)
| | - Omid Sedighi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Nima Tabatabaei Rezaei
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Amir Abbas Abedini
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Muhammet S Toprak
- Department of Applied Physics, KTH-Royal Institute of Technology, SE10691 Stockholm, Sweden
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd) London BioScience Innovation Centre 2 Royal College Street, London NW1 0NH, UK.
| |
Collapse
|
17
|
|
18
|
Abstract
Early diagnosis of diseases is of great importance because it increases the chance of a cure and significantly reduces treatment costs. Thus, development of rapid, sensitive, and reliable biosensing techniques is essential for the benefits of human life and health. As such, various nanomaterials have been explored to improve performance of biosensors, among which, carbon dots (CDs) have received enormous attention due to their excellent performance. In this Review, the recent advancements of CD-based biosensors have been carefully summarized. First, biosensors are classified according to their sensing strategies, and the role of CDs in these sensors is elaborated in detail. Next, several typical CD-based biosensors (including CD-only, enzymatic, antigen-antibody, and nucleic acid biosensors) and their applications are fully discussed. Last, advantages, challenges, and perspectives on the future trends of CD-based biosensors are highlighted.
Collapse
Affiliation(s)
- Chunyu Ji
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, Yunnan 650091, People’s Republic of China
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Roger M. Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Zhili Peng
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, Yunnan 650091, People’s Republic of China
| |
Collapse
|
19
|
García-Mendiola T, Requena-Sanz S, Martínez-Periñán E, Bravo I, Pariente F, Lorenzo E. Influence of carbon nanodots on DNA-Thionine interaction. Application to breast cancer diagnosis. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Guo F, Zhu Z, Zheng Z, Jin Y, Di X, Xu Z, Guan H. Facile synthesis of highly efficient fluorescent carbon dots for tetracycline detection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:4520-4527. [PMID: 31768961 DOI: 10.1007/s11356-019-06779-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Rampant use of tetracycline in animal feed is a threat to food security, the environment, and human health because of the risk of drug residues. Therefore, it is necessary to establish a sensitive, efficient, and reliable method for qualitative and quantitative detection of tetracycline. In this paper, we synthesized fluorescent carbon dots (FCDs) by thermal cracking of crab shell waste, and obtained a fluorescence quantum yield of 30%. Characterization of the FCDs by transmission electron microscopy, Fourier-transform infrared spectroscopy, ultraviolet visible absorption spectroscopy, and photoluminescence spectroscopy showed that they were fluorescent and evenly distributed with an average size of approximately 10 nm. We designed a sensitive probe for detecting tetracycline using the fluorescence intensity change of the FCDs. This method is sensitive, inexpensive, and environmentally friendly. The concentration of tetracycline was examined by comparing the fluorescence intensities of the FCDs before and after tetracycline addition. The limit of detection for tetracycline was 0.005 mg/L (signal-to-noise ratio = 3), which is promising for method development.
Collapse
Affiliation(s)
- Feng Guo
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Liaoning, China.
| | - Zihan Zhu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Liaoning, China
| | - Zhangqin Zheng
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Liaoning, China
| | - Ying Jin
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Liaoning, China
| | - Xiaoxuan Di
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Liaoning, China
| | - Zhonghao Xu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Liaoning, China
| | - Hongwei Guan
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Liaoning, China
| |
Collapse
|
21
|
Bravo I, Gutiérrez-Sánchez C, García-Mendiola T, Revenga-Parra M, Pariente F, Lorenzo E. Enhanced Performance of Reagent-Less Carbon Nanodots Based Enzyme Electrochemical Biosensors. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5576. [PMID: 31861148 PMCID: PMC6960740 DOI: 10.3390/s19245576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/03/2019] [Accepted: 12/14/2019] [Indexed: 01/08/2023]
Abstract
This work reports on the advantages of using carbon nanodots (CNDs) in the development of reagent-less oxidoreductase-based biosensors. Biosensor responses are based on the detection of H2O2, generated in the enzymatic reaction, at 0.4 V. A simple and fast method, consisting of direct adsorption of the bioconjugate, formed by mixing lactate oxidase, glucose oxidase, or uricase with CNDs, is employed to develop the nanostructured biosensors. Peripherical amide groups enriched CNDs are prepared from ethyleneglycol bis-(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid and tris(hydroxymethyl)aminomethane, and used as precursors. The bioconjugate formed between lactate oxidase and CNDs was chosen as a case study to determine the analytical parameters of the resulting L-lactate biosensor. A linear concentration range of 3.0 to 500 µM, a sensitivity of 4.98 × 10-3 µA·µM-1, and a detection limit of 0.9 µM were obtained for the L-lactate biosensing platform. The reproducibility of the biosensor was found to be 8.6%. The biosensor was applied to the L-lactate quantification in a commercial human serum sample. The standard addition method was employed. L-lactate concentration in the serum extract of 0.9 ± 0.3 mM (n = 3) was calculated. The result agrees well with the one obtained in 0.9 ± 0.2 mM, using a commercial spectrophotometric enzymatic kit.
Collapse
Affiliation(s)
- Iria Bravo
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (I.B.); (C.G.-S.); (T.G.-M.); (M.R.-P.); (F.P.)
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Faraday, 9, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Cristina Gutiérrez-Sánchez
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (I.B.); (C.G.-S.); (T.G.-M.); (M.R.-P.); (F.P.)
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Faraday, 9, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Tania García-Mendiola
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (I.B.); (C.G.-S.); (T.G.-M.); (M.R.-P.); (F.P.)
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Faraday, 9, Campus UAM, Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mónica Revenga-Parra
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (I.B.); (C.G.-S.); (T.G.-M.); (M.R.-P.); (F.P.)
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Faraday, 9, Campus UAM, Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Félix Pariente
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (I.B.); (C.G.-S.); (T.G.-M.); (M.R.-P.); (F.P.)
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (I.B.); (C.G.-S.); (T.G.-M.); (M.R.-P.); (F.P.)
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Faraday, 9, Campus UAM, Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
22
|
Wang T, Chen G, Li L, Wu Y. Highly Fluorescent Green Carbon Dots as a Fluorescent Probe for Detecting Mineral Water pH. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3801. [PMID: 31484290 PMCID: PMC6749429 DOI: 10.3390/s19173801] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/13/2019] [Accepted: 08/27/2019] [Indexed: 12/15/2022]
Abstract
In this report, high-brightness green carbon dots were successfully prepared using 3,5-diaminobenzoic acid as the sole precursor and synthesized in one step using a solvothermal strategy. Under the excitation of 365 nm ultraviolet light, the quantum yield of carbon dots is as high as 53.8%. Experiments revealed that the carbon dots are highly carbonized and the surface is rich in amino and carboxyl groups. The synthesized carbon dots have good water solubility, and are resistant to ions and temperature. The fluorescence intensity of CDs is sensitive to pH changes and is linearly correlated with the pH in the near-neutral range (pH = 6.0 to 9.0). Our experiments showed that carbon dots were sensitive and accurate fluorescent probes for measuring the pH value of drinking water, which could provide an effective method for measuring the pH value of water in the future.
Collapse
Affiliation(s)
- Tingyu Wang
- School of Science, Jiangnan University, Wuxi 214122, China
- School of Science, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
| | - Guoqing Chen
- School of Science, Jiangnan University, Wuxi 214122, China.
- School of Science, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China.
| | - Lei Li
- School of Science, Jiangnan University, Wuxi 214122, China
- School of Science, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
| | - Yamin Wu
- School of Science, Jiangnan University, Wuxi 214122, China
- School of Science, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
| |
Collapse
|
23
|
Karthikeyan R, Nelson DJ, Ajith A, John SA. Hetero atoms doped carbon dots modified electrodes for the sensitive and selective determination of phenolic anti-oxidant in coconut oil. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Yao J, Chen M, Li N, Liu C, Yang M. Experimental and theoretical studies of a novel electrochemical sensor based on molecularly imprinted polymer and B, N, F-CQDs/AgNPs for enhanced specific identification and dual signal amplification in highly selective and ultra-trace bisphenol S determination in plastic products. Anal Chim Acta 2019; 1066:36-48. [DOI: 10.1016/j.aca.2019.03.051] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 12/21/2022]
|
25
|
Recent Advancements in Doped/Co-Doped Carbon Quantum Dots for Multi-Potential Applications. C — JOURNAL OF CARBON RESEARCH 2019. [DOI: 10.3390/c5020024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Carbon quantum dots (CQDs)/carbon nanodots are a new class of fluorescent carbon nanomaterials having an approximate size in the range of 2–10 nm. The majority of the reported review articles have discussed about the development of the CQDs (via simple and cost-effective synthesis methods) for use in bio-imaging and chemical-/biological-sensing applications. However, there is a severe lack of consolidated studies on the recently developed CQDs (especially doped/co-doped) that are utilized in different areas of application. Hence, in this review, we have extensively discussed about the recent development in doped and co-doped CQDs (using elements/heteroatoms—e.g., boron (B), fluorine (F), nitrogen (N), sulphur (S), and phosphorous (P)), along with their synthesis method, reaction conditions, and/or quantum yield (QY), and their emerging multi-potential applications including electrical/electronics (such as light emitting diode (LED) and solar cells), fluorescent ink for anti-counterfeiting, optical sensors (for detection of metal ions, drugs, and pesticides/fungicides), gene delivery, and temperature probing.
Collapse
|
26
|
Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Carbon Dots and Graphene Quantum Dots in Electrochemical Biosensing. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E634. [PMID: 31010125 PMCID: PMC6523669 DOI: 10.3390/nano9040634] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022]
Abstract
Graphene quantum dots (GQDs) and carbon dots (CDs) are among the latest research frontiers in carbon-based nanomaterials. They provide interesting attributes to current electrochemical biosensing due to their intrinsic low toxicity, high solubility in many solvents, excellent electronic properties, robust chemical inertness, large specific surface area, abundant edge sites for functionalization, great biocompatibility, low cost, and versatility, as well as their ability for modification with attractive surface chemistries and other modifiers/nanomaterials. In this review article, the use of GQDs and CDs as signal tags or electrode surface modifiers to develop electrochemical biosensing strategies is critically discussed through the consideration of representative approaches reported in the last five years. The advantages and disadvantages arising from the use of GQDs and CDs in this context are outlined together with the still required work to fulfil the characteristics needed to achieve suitable electrochemical enzymatic and affinity biosensors with applications in the real world.
Collapse
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
27
|
Sensitive Electrochemical Detection of Caffeic Acid in Wine Based on Fluorine-Doped Graphene Oxide. SENSORS 2019; 19:s19071604. [PMID: 30987122 PMCID: PMC6480299 DOI: 10.3390/s19071604] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 01/11/2023]
Abstract
We report here a novel electrochemical sensor developed using fluorine-doped graphene oxide (F-GO) for the detection of caffeic acid (CA). The synthesized graphene oxide (GO) and F-GO nanomaterials were systematically characterized with a scanning electron microscope (SEM), and the presence of semi-ionic bonds was confirmed in the F-GO using X-ray photoelectron spectroscopy. The electrochemical behaviours of bare glassy carbon electrode (GCE), F-GO/GCE, and GO/GCE toward the oxidation of CA were studied using cyclic voltammetry (CV), and the results obtained from the CV investigation revealed that F-GO/GCE exhibited the highest electrochemically active surface area and electrocatalytic activity in contrast to the other electrodes. Differential pulse voltammetry (DPV) was employed for the analytical quantitation of CA, and the F-GO/GCE produced a stable oxidation signal over the selected CA concentration range (0.5 to 100.0 μM) with a low limit of detection of 0.018 μM. Furthermore, the acquired results from the selectivity studies revealed a strong anti-interference capability of the F-GO/GCE in the presence of other hydroxycinnamic acids and ascorbic acid. Moreover, the F-GO/GCE offered a good sensitivity, long-term stability, and an excellent reproducibility. The practical application of the electrochemical F-GO sensor was verified using various brands of commercially available wine. The developed electrochemical sensor successfully displayed its ability to directly detect CA in wine samples without pretreatment, making it a promising candidate for food and beverage quality control.
Collapse
|
28
|
Atabaev TS. Doped Carbon Dots for Sensing and Bioimaging Applications: A Minireview. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E342. [PMID: 29783639 PMCID: PMC5977356 DOI: 10.3390/nano8050342] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022]
Abstract
In the last decade, carbon dots (C-dots, CDs) or carbon quantum dots (CQDs) have attracted a considerable amount of attention from the scientific community as a low cost and biocompatible alternative to semiconductor quantum dots. In particular, doped C-dots have excellent fluorescent properties that have been successfully utilized for numerous applications. In this minireview, we overview the recent advances on the synthesis of doped C-dots derived from carbon-rich sources and their potential applications for biomedical and sensing applications. In addition, we will also discuss some challenges and outline some future perspectives of this exciting material.
Collapse
Affiliation(s)
- Timur Sh Atabaev
- Department of Chemistry, School of Science and Technology, Nazarbayev University, Astana 010000, Kazakhstan.
| |
Collapse
|
29
|
Hua J, Yang J, Zhu Y, Zhao C, Yang Y. Highly fluorescent carbon quantum dots as nanoprobes for sensitive and selective determination of mercury (II) in surface waters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 187:149-155. [PMID: 28683370 DOI: 10.1016/j.saa.2017.06.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/05/2017] [Accepted: 06/30/2017] [Indexed: 05/20/2023]
Abstract
A novel carbon quantum dots (CQDs) was successfully prepared through one-step green hydrothermal method using polyacrylamide as carbon source. The prepared CQDs were characterized using TEM, XRD, XPS, FT-IR, UV-Vis, and fluorescence spectroscopy. The CQDs was demonstrated as nanoprobes for mercury ion detection, moreover, it demonstrated excitation-dependent and superior stability in acidic and alkaline media. Besides, the probe exhibited a good linearity range (0.25-50μM) and a low detection limit (13.48nM). These attractive properties indicated that this novel CQDs can adapt to a variety of complex pH environment, which had extensive prospect and promising application for detection of mercury ions in complex water samples.
Collapse
Affiliation(s)
- Jianhao Hua
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Jian Yang
- Central Monitoring Center of Kunming City, Yunnan Province 650228, China
| | - Yan Zhu
- Central Monitoring Center of Kunming City, Yunnan Province 650228, China
| | - Chunxi Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China.
| |
Collapse
|