1
|
Yang H, Huang X, Yang M, Zhang X, Tang F, Gao B, Gong M, Liang Y, Liu Y, Qian X, Li H. Advanced analytical techniques for authenticity identification and quality evaluation in Essential oils: A review. Food Chem 2024; 451:139340. [PMID: 38678649 DOI: 10.1016/j.foodchem.2024.139340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
Essential oils (EO), secondary metabolites of plants are fragrant oily liquids with antibacterial, antiviral, anti-inflammatory, anti-allergic, and antioxidant effects. They are widely applied in food, medicine, cosmetics, and other fields. However, the quality of EOs remain uncertain owing to their high volatility and susceptibility to oxidation, influenced by factors such as the harvesting season, extraction, and separation techniques. Additionally, the huge economic value of EOs has led to a market marked by widespread and varied adulteration, making the assessment of their quality challenging. Therefore, developing simple, quick, and effective identification techniques for EOs is essential. This review comprehensively summarizes the techniques for assessing EO quality and identifying adulteration. It covers sensory evaluation, physical and chemical property evaluation, and chemical composition analysis, which are widely used and of great significance for the quality evaluation and adulteration detection of EOs.
Collapse
Affiliation(s)
- Huda Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoying Huang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Jiangxi Guxiangjinyun Great Health Industry Co. Ltd, Nanchang 330096, China.
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaofei Zhang
- Jiangxi Guxiangjinyun Great Health Industry Co. Ltd, Nanchang 330096, China; College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Fangrui Tang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Jiangxi Guxiangjinyun Great Health Industry Co. Ltd, Nanchang 330096, China
| | - Beibei Gao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Mengya Gong
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yong Liang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yang Liu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xingyi Qian
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Huiting Li
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Jiangxi Guxiangjinyun Great Health Industry Co. Ltd, Nanchang 330096, China.
| |
Collapse
|
2
|
Abstract
Mints emit diverse scents that exert specific biological functions and are relevance for applications. The current work strives to develop electronic noses that can electronically discriminate the scents emitted by different species of Mint as alternative to conventional profiling by gas chromatography. Here, 12 different sensing materials including 4 different metal oxide nanoparticle dispersions (AZO, ZnO, SnO2, ITO), one Metal Organic Frame as Cu(BPDC), and 7 different polymer films, including PVA, PEDOT:PSS, PFO, SB, SW, SG, and PB were used for functionalizing of Quartz Crystal Microbalance (QCM) sensors. The purpose was to discriminate six economically relevant Mint species (Mentha x piperita, Mentha spicata, Mentha spicata ssp. crispa, Mentha longifolia, Agastache rugosa, and Nepeta cataria). The adsorption and desorption datasets obtained from each modified QCM sensor were processed by three different classification models, including Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and k-Nearest Neighbor Analysis (k-NN). This allowed discriminating the different Mints with classification accuracies of 97.2% (PCA), 100% (LDA), and 99.9% (k-NN), respectively. Prediction accuracies with a repeating test measurement reached up to 90.6% for LDA, and 85.6% for k-NN. These data demonstrate that this electronic nose can discriminate different Mint scents in a reliable and efficient manner.
Collapse
|
3
|
Jian Y, Hu W, Zhao Z, Cheng P, Haick H, Yao M, Wu W. Gas Sensors Based on Chemi-Resistive Hybrid Functional Nanomaterials. NANO-MICRO LETTERS 2020; 12:71. [PMID: 34138318 PMCID: PMC7770957 DOI: 10.1007/s40820-020-0407-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/02/2020] [Indexed: 05/12/2023]
Abstract
Chemi-resistive sensors based on hybrid functional materials are promising candidates for gas sensing with high responsivity, good selectivity, fast response/recovery, great stability/repeatability, room-working temperature, low cost, and easy-to-fabricate, for versatile applications. This progress report reviews the advantages and advances of these sensing structures compared with the single constituent, according to five main sensing forms: manipulating/constructing heterojunctions, catalytic reaction, charge transfer, charge carrier transport, molecular binding/sieving, and their combinations. Promises and challenges of the advances of each form are presented and discussed. Critical thinking and ideas regarding the orientation of the development of hybrid material-based gas sensor in the future are discussed.
Collapse
Affiliation(s)
- Yingying Jian
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Xi'an, 710071, People's Republic of China
| | - Wenwen Hu
- School of Aerospace Science and Technology, Xidian University, Xi'an, 710071, People's Republic of China
| | - Zhenhuan Zhao
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Xi'an, 710071, People's Republic of China
| | - Pengfei Cheng
- School of Aerospace Science and Technology, Xidian University, Xi'an, 710071, People's Republic of China
| | - Hossam Haick
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Xi'an, 710071, People's Republic of China.
- Department of Chemical Engineering, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 3200003, Haifa, Israel.
| | - Mingshui Yao
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Xi'an, 710071, People's Republic of China.
| |
Collapse
|
4
|
Quantitative and Qualitative Analysis of Multicomponent Gas Using Sensor Array. SENSORS 2019; 19:s19183917. [PMID: 31514381 PMCID: PMC6767133 DOI: 10.3390/s19183917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/27/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022]
Abstract
The gas sensor array has long been a major tool for measuring gas due to its high sensitivity, quick response, and low power consumption. This goal, however, faces a difficult challenge because of the cross-sensitivity of the gas sensor. This paper presents a novel gas mixture analysis method for gas sensor array applications. The features extracted from the raw data utilizing principal component analysis (PCA) were used to complete random forest (RF) modeling, which enabled qualitative identification. Support vector regression (SVR), optimized by the particle swarm optimization (PSO) algorithm, was used to select hyperparameters C and γ to establish the optimal regression model for the purpose of quantitative analysis. Utilizing the dataset, we evaluated the effectiveness of our approach. Compared with logistic regression (LR) and support vector machine (SVM), the average recognition rate of PCA combined with RF was the highest (97%). The fitting effect of SVR optimized by PSO for gas concentration was better than that of SVR and solved the problem of hyperparameters selection.
Collapse
|
5
|
Thakur M, Bhatt V, Kumar R. Effect of shade level and mulch type on growth, yield and essential oil composition of damask rose (Rosa damascena Mill.) under mid hill conditions of Western Himalayas. PLoS One 2019; 14:e0214672. [PMID: 30946775 PMCID: PMC6448930 DOI: 10.1371/journal.pone.0214672] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/18/2019] [Indexed: 11/18/2022] Open
Abstract
A field experiment was conducted at the experimental farm of CSIR-Institute of Himalayan Bioresource Technology, Palampur, India for two consecutive years (2015–16 and 2016–17). The aim of the study was to test the hypothesis whether different shade level and mulch type would influence the growth, flower yield and essential oil profile of R. damascena. Yield attributes viz., numbers of flowers plant-1, fresh flower weight plant-1, flower yield, and essential oil yield were significantly higher under open sunny conditions as compared to 25% and 50% shade levels. However, plants grown under 50% shade level recorded significantly higher plant height (cm), plant spread (cm) and the lowest numbers of branches as compared to control. Among mulches, black polyethylene mulch recorded significantly higher growth, and yield attributes of damask rose as compared to other mulches. Black polyethylene mulch recorded 74.5 and 39.2% higher fresh flower yield as compared to without mulch, during 2015–16 and 2016–17, respectively. Correlation studies showed a positively significant correlation between quality and quantity traits. A total of twenty-six essential oil compounds were identified which accounted for a total of 88.8 to 95.3%. Plants grown under open sunny conditions along with the applications of black polyethylene mulch produced a higher concentration of citronellol and trans-geraniol. Damask rose planted in open sunny conditions and mulched with black polyethylene sheet recorded significantly higher flower yield.
Collapse
Affiliation(s)
- Meenakshi Thakur
- Academy of Scientific and Innovative Research, New Delhi, India
- Agrotechnology of Medicinal, Aromatic and Commercially Important Plants Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (HP), India
| | - Vinod Bhatt
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, (Council of Scientific and Industrial Research), Palampur (HP), India
| | - Rakesh Kumar
- Academy of Scientific and Innovative Research, New Delhi, India
- Agrotechnology of Medicinal, Aromatic and Commercially Important Plants Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (HP), India
- * E-mail:
| |
Collapse
|
6
|
Zhu N, Zhu Y, Yu N, Wei Y, Zhang J, Hou Y, Sun AD. Evaluation of microbial, physicochemical parameters and flavor of blueberry juice after microchip-pulsed electric field. Food Chem 2019; 274:146-155. [DOI: 10.1016/j.foodchem.2018.08.092] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 11/25/2022]
|
7
|
Hu W, Wan L, Jian Y, Ren C, Jin K, Su X, Bai X, Haick H, Yao M, Wu W. Electronic Noses: From Advanced Materials to Sensors Aided with Data Processing. ADVANCED MATERIALS TECHNOLOGIES 2018:1800488. [DOI: 10.1002/admt.201800488] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Wenwen Hu
- School of Aerospace Science and TechnologyXidian University Shaanxi 710126 P. R. China
| | - Liangtian Wan
- The Key Laboratory for Ubiquitous Network and Service Software of Liaoning ProvinceSchool of SoftwareDalian University of Technology Dalian 116620 China
| | - Yingying Jian
- School of Advanced Materials and NanotechnologyXidian University Shaanxi 710126 P. R. China
| | - Cong Ren
- School of Advanced Materials and NanotechnologyXidian University Shaanxi 710126 P. R. China
| | - Ke Jin
- School of Aerospace Science and TechnologyXidian University Shaanxi 710126 P. R. China
| | - Xinghua Su
- School of Materials Science and EngineeringChang'an University Xi'an 710061 China
| | - Xiaoxia Bai
- School of Advanced Materials and NanotechnologyXidian University Shaanxi 710126 P. R. China
| | - Hossam Haick
- School of Advanced Materials and NanotechnologyXidian University Shaanxi 710126 P. R. China
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion‐Israel Institute of Technology Haifa 3200003 Israel
| | - Mingshui Yao
- Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Weiwei Wu
- School of Advanced Materials and NanotechnologyXidian University Shaanxi 710126 P. R. China
| |
Collapse
|
8
|
Fatemi Heydarabad SA, Raoufat MH, Kamgar S, Karami A. Design, development and evaluation of a single-task electronic nose rig for assessing adulterated hydrosols. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9924-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Abstract
There are various kinds of brain monitoring techniques, including local field potential, near-infrared spectroscopy, magnetic resonance imaging (MRI), positron emission tomography, functional MRI, electroencephalography (EEG), and magnetoencephalography. Among those techniques, EEG is the most widely used one due to its portability, low setup cost, and noninvasiveness. Apart from other advantages, EEG signals also help to evaluate the ability of the smelling organ. In such studies, EEG signals, which are recorded during smelling, are analyzed to determine the subject lacks any smelling ability or to measure the response of the brain. The main idea of this study is to show the emotional difference in EEG signals during perception of valerian, lotus flower, cheese, and rosewater odors by the EEG gamma wave. The proposed method was applied to the EEG signals, which were taken from five healthy subjects in the conditions of eyes open and eyes closed at the Swiss Federal Institute of Technology. In order to represent the signals, we extracted features from the gamma band of the EEG trials by continuous wavelet transform with the selection of Morlet as a wavelet function. Then the [Formula: see text]-nearest neighbor algorithm was implemented as the classifier for recognizing the EEG trials as valerian, lotus flower, cheese, and rosewater. We achieved an average classification accuracy rate of 87.50% with the 4.3 standard deviation value for the subjects in eyes-open condition and an average classification accuracy rate of 94.12% with the 2.9 standard deviation value for the subjects in eyes-closed condition. The results prove that the proposed continuous wavelet transform-based feature extraction method has great potential to classify the EEG signals recorded during smelling of the present odors. It has been also established that gamma-band activity of the brain is highly associated with olfaction.
Collapse
Affiliation(s)
- Onder Aydemir
- Karadeniz Technical University, Department of Electrical and Electronics Engineering, 61080, Trabzon, Turkey
| |
Collapse
|